Fe3O4@Silica sulfuric acid core–shell composite as a novel nanomagnetic solid acid: synthesis, characterization and application as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidinones/thiones under solvent-free conditions

Fe3O4@Silica sulfuric acid core–shell composite as a novel nanomagnetic solid acid: synthesis,... A simple and convenient method was used to prepare Fe3O4@Silica sulfuric acid core–shell composite using Fe3O4 spheres as the core and silica sulfuric acid nanoparticles as the shell. Magnetite nanoparticles were synthesized by the co-precipitation of FeCl2 and FeCl3 in ammonia solution. To improve the chemical stability of magnetite nanoparticles, its surface engineering was successfully performed by the suitable deposition of silica onto nano-particles’ surface by the ammonia-catalyzed hydrolysis of tetraethoxysilane. Next, the SiO2 spheres served as a support for the immobilization of SO3H groups by simple mixing of the core–shell composite and chlorosulfonic acid in CH2Cl2. The resulting solid acid nanoparticles were characterized by infrared spectroscopy, scanning electron microscope, thermogravimetric analysis, and vibrating sample magnetometer. The catalytic activity of this solid acid nanocomposite was probed through one-pot synthesis of 3,4-dihydropyrimidinones via three-component couplings of aldehydes, β-diketone, and urea or thiourea under solvent-free conditions. In this reaction, Fe3O4@Silica sulfuric acid shows a highly catalytic nature, easy to handle procedure, short reaction time, recycle exploitation, and excellent isolated yields. The nanomagnetic catalyst could be readily separated from the solution via application of an external magnet, allowing straightforward recovery and reuse. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Fe3O4@Silica sulfuric acid core–shell composite as a novel nanomagnetic solid acid: synthesis, characterization and application as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidinones/thiones under solvent-free conditions

Loading next page...
 
/lp/springer_journal/fe3o4-silica-sulfuric-acid-core-shell-composite-as-a-novel-Wrry3fhJ0e
Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-013-1407-6
Publisher site
See Article on Publisher Site

Abstract

A simple and convenient method was used to prepare Fe3O4@Silica sulfuric acid core–shell composite using Fe3O4 spheres as the core and silica sulfuric acid nanoparticles as the shell. Magnetite nanoparticles were synthesized by the co-precipitation of FeCl2 and FeCl3 in ammonia solution. To improve the chemical stability of magnetite nanoparticles, its surface engineering was successfully performed by the suitable deposition of silica onto nano-particles’ surface by the ammonia-catalyzed hydrolysis of tetraethoxysilane. Next, the SiO2 spheres served as a support for the immobilization of SO3H groups by simple mixing of the core–shell composite and chlorosulfonic acid in CH2Cl2. The resulting solid acid nanoparticles were characterized by infrared spectroscopy, scanning electron microscope, thermogravimetric analysis, and vibrating sample magnetometer. The catalytic activity of this solid acid nanocomposite was probed through one-pot synthesis of 3,4-dihydropyrimidinones via three-component couplings of aldehydes, β-diketone, and urea or thiourea under solvent-free conditions. In this reaction, Fe3O4@Silica sulfuric acid shows a highly catalytic nature, easy to handle procedure, short reaction time, recycle exploitation, and excellent isolated yields. The nanomagnetic catalyst could be readily separated from the solution via application of an external magnet, allowing straightforward recovery and reuse.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 8, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off