Fe3O4@Silica sulfuric acid core–shell composite as a novel nanomagnetic solid acid: synthesis, characterization and application as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidinones/thiones under solvent-free conditions

Fe3O4@Silica sulfuric acid core–shell composite as a novel nanomagnetic solid acid: synthesis,... A simple and convenient method was used to prepare Fe3O4@Silica sulfuric acid core–shell composite using Fe3O4 spheres as the core and silica sulfuric acid nanoparticles as the shell. Magnetite nanoparticles were synthesized by the co-precipitation of FeCl2 and FeCl3 in ammonia solution. To improve the chemical stability of magnetite nanoparticles, its surface engineering was successfully performed by the suitable deposition of silica onto nano-particles’ surface by the ammonia-catalyzed hydrolysis of tetraethoxysilane. Next, the SiO2 spheres served as a support for the immobilization of SO3H groups by simple mixing of the core–shell composite and chlorosulfonic acid in CH2Cl2. The resulting solid acid nanoparticles were characterized by infrared spectroscopy, scanning electron microscope, thermogravimetric analysis, and vibrating sample magnetometer. The catalytic activity of this solid acid nanocomposite was probed through one-pot synthesis of 3,4-dihydropyrimidinones via three-component couplings of aldehydes, β-diketone, and urea or thiourea under solvent-free conditions. In this reaction, Fe3O4@Silica sulfuric acid shows a highly catalytic nature, easy to handle procedure, short reaction time, recycle exploitation, and excellent isolated yields. The nanomagnetic catalyst could be readily separated from the solution via application of an external magnet, allowing straightforward recovery and reuse. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Fe3O4@Silica sulfuric acid core–shell composite as a novel nanomagnetic solid acid: synthesis, characterization and application as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidinones/thiones under solvent-free conditions

Loading next page...
 
/lp/springer_journal/fe3o4-silica-sulfuric-acid-core-shell-composite-as-a-novel-Wrry3fhJ0e
Publisher
Springer Netherlands
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-013-1407-6
Publisher site
See Article on Publisher Site

Abstract

A simple and convenient method was used to prepare Fe3O4@Silica sulfuric acid core–shell composite using Fe3O4 spheres as the core and silica sulfuric acid nanoparticles as the shell. Magnetite nanoparticles were synthesized by the co-precipitation of FeCl2 and FeCl3 in ammonia solution. To improve the chemical stability of magnetite nanoparticles, its surface engineering was successfully performed by the suitable deposition of silica onto nano-particles’ surface by the ammonia-catalyzed hydrolysis of tetraethoxysilane. Next, the SiO2 spheres served as a support for the immobilization of SO3H groups by simple mixing of the core–shell composite and chlorosulfonic acid in CH2Cl2. The resulting solid acid nanoparticles were characterized by infrared spectroscopy, scanning electron microscope, thermogravimetric analysis, and vibrating sample magnetometer. The catalytic activity of this solid acid nanocomposite was probed through one-pot synthesis of 3,4-dihydropyrimidinones via three-component couplings of aldehydes, β-diketone, and urea or thiourea under solvent-free conditions. In this reaction, Fe3O4@Silica sulfuric acid shows a highly catalytic nature, easy to handle procedure, short reaction time, recycle exploitation, and excellent isolated yields. The nanomagnetic catalyst could be readily separated from the solution via application of an external magnet, allowing straightforward recovery and reuse.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 8, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off