Fe3O4 nanoparticles coated by new functionalized tetraaza-2,3 dialdehyde micro-crystalline cellulose: synthesis, characterization, and catalytic application for degradation of Acid Yellow 17

Fe3O4 nanoparticles coated by new functionalized tetraaza-2,3 dialdehyde micro-crystalline... In this study, we developed an original approach for preparing cellulose-coated magnetite nanoparticles (NPs). Two novel Schiff bases (PDA-g-DAC) and [Bz-(PDA-g-DAC)] were synthesized via condensation reactions of periodate oxidized micro-crystalline cellulose (DAC) with o-phenylene diamine (PDA) to obtain its azomethine derivative with 85% yield. Subsequently, the functionalization of (PDA-g-DAC) with benzil (Bz) yields the tetraaza macrocycle [Bz-(PDA-g-DAC)]. The physicochemical characterization of the condensation products was performed using 13CNMR, FTIR, ATG, DSC, and X-ray diffraction techniques. Magnetic nanomaterial-based Schiff base cellulose was successfully prepared using in situ chemical co-precipitation of coordinated ferric and ferrous ions in cellulose Schiff base matrix under optimized conditions, and then, its magnetic properties were characterized. The results demonstrated that the Fe3O4 NPs coated with [Bz-(PDA-g-DAC)] were homogeneously coated in the matrix under ultrasonic irradiation with the saturation magnetization of 69.50 emu g−1. In addition, XRD line broadening analysis showed that the average particle size of the NPs was 37.3 nm. Furthermore, FTIR spectra demonstrated that [Bz-(PDA-g-DAC)] concavity was anchored to magnetite Fe3O4 NPs through azomethine groups. Vibrating sample magnetometry (VSM) of [Bz-(PDA-g-DAC)@Fe3O4] magnetic nanocomposite samples showed the typical behavior of ferromagnetism. This study provided a green and facile method to inhibit magnetic nanoparticle aggregation. Activity results revealed that the prepared [Bz-(PDA-g-DAC)@Fe3O4] catalyst shows the maximum activity for degradation of Acid Yellow 17 (AY17) compared to other prepared catalysts. After degradation reaction, the [Bz-(PDA-g-DAC)@Fe3O4] catalyst was recovered from the reaction mixture via an external magnet and used for further five consecutive cycles with excellent catalytic activity, successively, which was comparable to the fresh catalyst. The catalyst degradation efficiency and its easy separation exhibited that [Bz-(PDA-g-DAC)@Fe3O4] catalyst is a promising material for the removal of AY17 from aqueous solutions in green chemistry perspectives. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Iranian Polymer Journal Springer Journals

Fe3O4 nanoparticles coated by new functionalized tetraaza-2,3 dialdehyde micro-crystalline cellulose: synthesis, characterization, and catalytic application for degradation of Acid Yellow 17

Loading next page...
 
/lp/springer_journal/fe3o4-nanoparticles-coated-by-new-functionalized-tetraaza-2-3-iCWNwzwaV0
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Iran Polymer and Petrochemical Institute
Subject
Chemistry; Polymer Sciences; Ceramics, Glass, Composites, Natural Materials
ISSN
1026-1265
eISSN
1735-5265
D.O.I.
10.1007/s13726-017-0546-9
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial