Fe3O4-modified graphene oxide as a sorbent for sequential magnetic solid phase extraction and dispersive liquid phase microextraction of thallium

Fe3O4-modified graphene oxide as a sorbent for sequential magnetic solid phase extraction and... A combination of magnetic solid phase extraction (MSPE) and dispersive liquid phase microextraction (DLPME) was applied in a new method for preconcentration and extremely sensitive determination of thallium in aqueous samples. The first step of extraction uses a Fe3O4-graphene oxide conjugate whose surface was covalently linked to the chelator 4-methyl-2(2-pyrazinyl)-1,3-thiazole-5-carboxy acid. After completion of MSPE, the nanoparticles were eluted with benzyl alcohol. In order to further enhance preconcentration, the benzyl alcohol phase containing the thallium chelate is used as a dispersing solvent for DLPME. After the elution, the preconcentrated thallium phase is transferred into a Rh/Pt/Pd-modified graphite tube and quantified via graphite furnace AAS. After optimization of the experimental conditions, the calibration plot is linear in the 0.015 to 4 μg·L−1 thallium concentration range, and the detection limit (at an S/N ratio of 3) is 12 ng·L−1. An absolute detection limit of 120 fg was determined when injecting a 10 μL volume into the graphite furnace. When using a 100 mL sample solution and 10 μL of the extraction solvent, the enrichment factor is as large as 6500, with an overall 65% recovery if MSPE and DLPME are combined. Selectivity of the method is achieved by masking of possibly interfering ions with EDTA. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microchimica Acta Springer Journals

Fe3O4-modified graphene oxide as a sorbent for sequential magnetic solid phase extraction and dispersive liquid phase microextraction of thallium

Loading next page...
 
/lp/springer_journal/fe3o4-modified-graphene-oxide-as-a-sorbent-for-sequential-magnetic-Hv9cs0V0xD
Publisher
Springer Vienna
Copyright
Copyright © 2017 by Springer-Verlag Wien
Subject
Chemistry; Nanochemistry; Nanotechnology; Characterization and Evaluation of Materials; Analytical Chemistry; Microengineering
ISSN
0026-3672
eISSN
1436-5073
D.O.I.
10.1007/s00604-017-2340-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial