Fault-Tolerant Quantum Error Correction for non-Abelian Anyons

Fault-Tolerant Quantum Error Correction for non-Abelian Anyons While topological quantum computation is intrinsically fault-tolerant at zero temperature, it loses its topological protection at any finite temperature. We present a scheme to protect the information stored in a system supporting non-cyclic anyons against thermal and measurement errors. The correction procedure builds on the work of Gács (J Comput Syst Sci 32:15–78, 1986. doi: 10.1145/800061.808730 ) and Harrington (Analysis of quantum error-correcting codes: symplectic lattice codes and toric code, 2004) and operates as a local cellular automaton. In contrast to previously studied schemes, our scheme is valid for both abelian and non-abelian anyons and accounts for measurement errors. We analytically prove the existence of a fault-tolerant threshold for a certain class of non-Abelian anyon models, and numerically simulate the procedure for the specific example of Ising anyons. The result of our simulations are consistent with a threshold between $${10^{-4}}$$ 10 - 4 and $${10^{-3}}$$ 10 - 3 . http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Communications in Mathematical Physics Springer Journals

Fault-Tolerant Quantum Error Correction for non-Abelian Anyons

Loading next page...
 
/lp/springer_journal/fault-tolerant-quantum-error-correction-for-non-abelian-anyons-blNeENfduK
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Physics; Theoretical, Mathematical and Computational Physics; Mathematical Physics; Quantum Physics; Complex Systems; Classical and Quantum Gravitation, Relativity Theory
ISSN
0010-3616
eISSN
1432-0916
D.O.I.
10.1007/s00220-017-2923-9
Publisher site
See Article on Publisher Site

Abstract

While topological quantum computation is intrinsically fault-tolerant at zero temperature, it loses its topological protection at any finite temperature. We present a scheme to protect the information stored in a system supporting non-cyclic anyons against thermal and measurement errors. The correction procedure builds on the work of Gács (J Comput Syst Sci 32:15–78, 1986. doi: 10.1145/800061.808730 ) and Harrington (Analysis of quantum error-correcting codes: symplectic lattice codes and toric code, 2004) and operates as a local cellular automaton. In contrast to previously studied schemes, our scheme is valid for both abelian and non-abelian anyons and accounts for measurement errors. We analytically prove the existence of a fault-tolerant threshold for a certain class of non-Abelian anyon models, and numerically simulate the procedure for the specific example of Ising anyons. The result of our simulations are consistent with a threshold between $${10^{-4}}$$ 10 - 4 and $${10^{-3}}$$ 10 - 3 .

Journal

Communications in Mathematical PhysicsSpringer Journals

Published: Jul 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off