Fault-tolerant high-capacity quantum key distribution over a collective-noise channel using extended unitary operations

Fault-tolerant high-capacity quantum key distribution over a collective-noise channel using... We propose two fault-tolerant high-capacity quantum key distribution schemes, in which an entangled pair over a collective-noise channel consisting of one logical qubit and one physical qubit can carry four bits of key information. The basic idea is to use 2-extended unitary operations from collective noises together with quantum dense coding. The key messages are encoded on logical qubits of two physical qubits with sixteen 2-extended unitary operations based on collective noises. The key can be recovered using Bell-state analysis on the logical qubit and a single-photon measurement on the physical qubit rather than three-qubit GHZ joint measurements. The proposed protocols require a collation table to be shared between Alice and Bob in advance. Consequently, the key messages carried by an entangled state, in our protocol, have doubled at the price of sharing the collation table between Alice and Bob. However, the efficiency of qubits is enhanced because a quantum bit is more expensive to prepare than a classical bit. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Fault-tolerant high-capacity quantum key distribution over a collective-noise channel using extended unitary operations

Loading next page...
 
/lp/springer_journal/fault-tolerant-high-capacity-quantum-key-distribution-over-a-xBzPCQEAEe
Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-014-0746-6
Publisher site
See Article on Publisher Site

Abstract

We propose two fault-tolerant high-capacity quantum key distribution schemes, in which an entangled pair over a collective-noise channel consisting of one logical qubit and one physical qubit can carry four bits of key information. The basic idea is to use 2-extended unitary operations from collective noises together with quantum dense coding. The key messages are encoded on logical qubits of two physical qubits with sixteen 2-extended unitary operations based on collective noises. The key can be recovered using Bell-state analysis on the logical qubit and a single-photon measurement on the physical qubit rather than three-qubit GHZ joint measurements. The proposed protocols require a collation table to be shared between Alice and Bob in advance. Consequently, the key messages carried by an entangled state, in our protocol, have doubled at the price of sharing the collation table between Alice and Bob. However, the efficiency of qubits is enhanced because a quantum bit is more expensive to prepare than a classical bit.

Journal

Quantum Information ProcessingSpringer Journals

Published: Mar 21, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off