Fault tolerant authenticated quantum direct communication immune to collective noises

Fault tolerant authenticated quantum direct communication immune to collective noises This study proposes two new coding functions for GHZ states and GHZ-like states, respectively. Based on these coding functions, two fault tolerant authenticated quantum direct communication (AQDC) protocols are proposed. Each of which is robust under one kind of collective noises: collective-dephasing noise and collective-rotation noise, respectively. Moreover, the proposed AQDC protocols enable a sender to send a secure as well as authenticated message to a receiver within only one step quantum transmission without using the classical channels. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Fault tolerant authenticated quantum direct communication immune to collective noises

Loading next page...
 
/lp/springer_journal/fault-tolerant-authenticated-quantum-direct-communication-immune-to-aLEsSAmBV7
Publisher
Springer US
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-013-0611-z
Publisher site
See Article on Publisher Site

Abstract

This study proposes two new coding functions for GHZ states and GHZ-like states, respectively. Based on these coding functions, two fault tolerant authenticated quantum direct communication (AQDC) protocols are proposed. Each of which is robust under one kind of collective noises: collective-dephasing noise and collective-rotation noise, respectively. Moreover, the proposed AQDC protocols enable a sender to send a secure as well as authenticated message to a receiver within only one step quantum transmission without using the classical channels.

Journal

Quantum Information ProcessingSpringer Journals

Published: Jul 20, 2013

References

  • Quantum direct communication with authentication
    Lee, H.; Lim, J.; Yang, H.
  • Improving the multiparty quantum secret sharing over two collective-noise channels against insider attack
    Sun, Y; Wen, QY; Zhu, FC

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off