Fatty acid composition of lipids in vegetative organs of the halophyte Suaeda altissima under different levels of salinity

Fatty acid composition of lipids in vegetative organs of the halophyte Suaeda altissima under... Qualitative and quantitative composition of fatty acids (FA) in the lipids of vegetative organs of the halophyte Suaeda altissima (L.) Pall. grown at different NaCl concentrations in nutrient solution was studied. Along with this, the biomass of these organs, the content of water and Na+, Cl−, and K+ ions in them, and the ultrastructure of root and leaf cells were determined. At both low (1 mM) and high (750 mM) NaCl concentrations in nutrient solution, plants could maintain growth and water content in organs, demonstrating a noticeable increase in the dry weight and a slight increase in the water content at 250 mM NaCl. At all NaCl concentrations in nutrient solution, S. altissima tissues contained a relatively high K+ amount. Under salinity, Na+ and Cl− ions contributed substantially into the increase in the cell osmotic pressure, i.e., a decrease in their water potential; in the absence of salinity, K+ fulfilled this function. In the cells of both roots and leaves, NaCl stimulated endo- and exocytosis, supposedly involved in the vesicular compound transport. 750 mM NaCl induced plasmolysis and changes in the membrane structure, which can be interpreted as degradation processes. Under optimal NaCl concentration in medium (250 mM), the content of lipids in plant aboveground organs per fresh weight was more than 2.5-fold higher than under 1 or 750 mM NaCl, whereas in the roots opposite patten was observed. When plants were grown under non-optimal conditions, substantial changes occurred in the qualitative and quantitative FA composition in lipids of both aboveground organs and roots. Observed changes are discussed in relation to processes underlying S. altissima salt tolerance and those of disintegration occurring at the high external NaCl concentration (750 mM). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Fatty acid composition of lipids in vegetative organs of the halophyte Suaeda altissima under different levels of salinity

Loading next page...
 
/lp/springer_journal/fatty-acid-composition-of-lipids-in-vegetative-organs-of-the-halophyte-i6QsYSfSeb
Publisher
Springer US
Copyright
Copyright © 2013 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443713050142
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial