Fatigue Hysteresis Behavior of 2.5D Woven C/SiC Composites: Theory and Experiments

Fatigue Hysteresis Behavior of 2.5D Woven C/SiC Composites: Theory and Experiments This paper presents an intriguing fatigue hysteresis behavior of 2.5 dimensional woven C/SiC composites via the integration tool of advanced experimental techniques with a multiscale theoretical model. Tension-tension fatigue experiment has been carried out to predict the fatigue hysteresis properties of 2.5D woven C/SiC composite at room temperature, accompanied with the fracture of specimens to investigate the mechanism of fatigue damage. Meanwhile, a multiscale fatigue model of 2.5D woven C/SiC composites, which encompasses a micro-scale model of fiber/matrix/porosity in fiber tows and a macro-scale model of unit-cell, has been proposed to provide a reliable validation of the experimental results based on fiber damages resulting from relative slip motion with respect to matrix at interfaces and the architecture of 2.5D woven C/SiC composites. The predicted hysteresis loop from theoretical model at room temperature holds great agreement with that from tension-tension fatigue experiments. Also, effects of fatigue load, braided structural parameters and material properties at micro scale on fatigue hysteresis behavior have been investigated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Composite Materials Springer Journals

Fatigue Hysteresis Behavior of 2.5D Woven C/SiC Composites: Theory and Experiments

Loading next page...
 
/lp/springer_journal/fatigue-hysteresis-behavior-of-2-5d-woven-c-sic-composites-theory-and-TLEfviCGnu
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media Dordrecht
Subject
Materials Science; Characterization and Evaluation of Materials; Classical Mechanics; Polymer Sciences; Industrial Chemistry/Chemical Engineering
ISSN
0929-189X
eISSN
1573-4897
D.O.I.
10.1007/s10443-017-9591-y
Publisher site
See Article on Publisher Site

Abstract

This paper presents an intriguing fatigue hysteresis behavior of 2.5 dimensional woven C/SiC composites via the integration tool of advanced experimental techniques with a multiscale theoretical model. Tension-tension fatigue experiment has been carried out to predict the fatigue hysteresis properties of 2.5D woven C/SiC composite at room temperature, accompanied with the fracture of specimens to investigate the mechanism of fatigue damage. Meanwhile, a multiscale fatigue model of 2.5D woven C/SiC composites, which encompasses a micro-scale model of fiber/matrix/porosity in fiber tows and a macro-scale model of unit-cell, has been proposed to provide a reliable validation of the experimental results based on fiber damages resulting from relative slip motion with respect to matrix at interfaces and the architecture of 2.5D woven C/SiC composites. The predicted hysteresis loop from theoretical model at room temperature holds great agreement with that from tension-tension fatigue experiments. Also, effects of fatigue load, braided structural parameters and material properties at micro scale on fatigue hysteresis behavior have been investigated.

Journal

Applied Composite MaterialsSpringer Journals

Published: Feb 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off