Fat and carbohydrate content in the diet induces drastic changes in gene expression in young Göttingen minipigs

Fat and carbohydrate content in the diet induces drastic changes in gene expression in young... In human health, there is interest in developing specific diets to reduce body weight. These studies are mainly focused on phenotypic changes induced in blood measurements, i.e., triglycerides, HDL, LDL, and insulin, and on physical changes, i.e., body weight and BMI. To evaluate the biological impact of diet interventions, it is very important to investigate the molecular mechanisms driving the diet-induced phenotypic changes in relevant tissues. However, studying these effects in humans is difficult due to ethical concerns in doing interventions and obtaining tissue samples and good animal models are therefore needed. Göttingen minipigs, a small size obesity prone pig breed, have previously been shown to be a useful translational animal model for metabolic studies. In this study, 16 Göttingen minipig males (2-month old) were submitted to 13 weeks of differential diets to investigate the initial stages of diet-induced metabolic changes. Half of them were fed a high-fat/cholesterol, low-carbohydrate (HFLC) diet, and the other half were fed a low- fat/cholesterol, high-carbohydrate (LFHC) diet. After 13 weeks, the HFLC group weighted less and had dyslipidemia compared to the LFHC group. Liver, pancreas, and adipose tissues were collected at slaughter. Gene expression profiling of 83 metabolism-relevant genes was performed using high-throughput qPCR. In total, 41 genes were deregulated in at least one of the five tissues analyzed, with liver being the most drastically affected tissue. The new knowledge gained in this study could potentially be of value for considering direct modulation of gene expression by nutrient content in the diet. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Fat and carbohydrate content in the diet induces drastic changes in gene expression in young Göttingen minipigs

Loading next page...
 
/lp/springer_journal/fat-and-carbohydrate-content-in-the-diet-induces-drastic-changes-in-4Olw6NqJRf
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-017-9690-y
Publisher site
See Article on Publisher Site

Abstract

In human health, there is interest in developing specific diets to reduce body weight. These studies are mainly focused on phenotypic changes induced in blood measurements, i.e., triglycerides, HDL, LDL, and insulin, and on physical changes, i.e., body weight and BMI. To evaluate the biological impact of diet interventions, it is very important to investigate the molecular mechanisms driving the diet-induced phenotypic changes in relevant tissues. However, studying these effects in humans is difficult due to ethical concerns in doing interventions and obtaining tissue samples and good animal models are therefore needed. Göttingen minipigs, a small size obesity prone pig breed, have previously been shown to be a useful translational animal model for metabolic studies. In this study, 16 Göttingen minipig males (2-month old) were submitted to 13 weeks of differential diets to investigate the initial stages of diet-induced metabolic changes. Half of them were fed a high-fat/cholesterol, low-carbohydrate (HFLC) diet, and the other half were fed a low- fat/cholesterol, high-carbohydrate (LFHC) diet. After 13 weeks, the HFLC group weighted less and had dyslipidemia compared to the LFHC group. Liver, pancreas, and adipose tissues were collected at slaughter. Gene expression profiling of 83 metabolism-relevant genes was performed using high-throughput qPCR. In total, 41 genes were deregulated in at least one of the five tissues analyzed, with liver being the most drastically affected tissue. The new knowledge gained in this study could potentially be of value for considering direct modulation of gene expression by nutrient content in the diet.

Journal

Mammalian GenomeSpringer Journals

Published: Apr 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off