Fast registration of 3D point clouds with offset surfaces in precision grinding of free-form surfaces

Fast registration of 3D point clouds with offset surfaces in precision grinding of free-form... Because of its high sensitivity to misalignment, precision grinding of free-form surfaces with micron accuracy requires accurate registration of the surface measurement point cloud. Registration of point clouds obtained with a coordinate measuring machine (CMM) is generally an iterative process of finding optimal coordinate transformation between the CMM frame and the model frame of the workpiece by minimizing the point-to-surface distances with probe radius compensation. For free-form surfaces, frequent calculation of point-to-surface distances consumes very much time, and a trade-off has to be made between the efficiency and the accuracy. This paper presents a method for fast registration of free-form surface point clouds based on the point-to-triangle distance which involves only Delaunay triangulation of a two-dimensional dataset, and the surface normal is quickly calculated from cross product. Probe radius compensation is realized by registering the probe center points with the offset surface. We prove that it is equivalent to registering the probe contact points with the nominal surface through theoretical analysis. The registration problem is then formulated as sequential linear least-square problems with properly defined ball constraints. To validate the method, numerical simulations are presented to show the accuracy of the point-to-triangle distance. The registration algorithm also shows excellent robustness against misalignment of tens of millimeters/degrees. Finally measurement, registration, and grinding of a free-form optical surface are experimentally demonstrated. The surface error obtained after registration is used for compensatory grinding which reduces it to micron level. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Fast registration of 3D point clouds with offset surfaces in precision grinding of free-form surfaces

Loading next page...
 
/lp/springer_journal/fast-registration-of-3d-point-clouds-with-offset-surfaces-in-precision-wkbXzufEPT
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag London Ltd., part of Springer Nature
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-018-2203-7
Publisher site
See Article on Publisher Site

Abstract

Because of its high sensitivity to misalignment, precision grinding of free-form surfaces with micron accuracy requires accurate registration of the surface measurement point cloud. Registration of point clouds obtained with a coordinate measuring machine (CMM) is generally an iterative process of finding optimal coordinate transformation between the CMM frame and the model frame of the workpiece by minimizing the point-to-surface distances with probe radius compensation. For free-form surfaces, frequent calculation of point-to-surface distances consumes very much time, and a trade-off has to be made between the efficiency and the accuracy. This paper presents a method for fast registration of free-form surface point clouds based on the point-to-triangle distance which involves only Delaunay triangulation of a two-dimensional dataset, and the surface normal is quickly calculated from cross product. Probe radius compensation is realized by registering the probe center points with the offset surface. We prove that it is equivalent to registering the probe contact points with the nominal surface through theoretical analysis. The registration problem is then formulated as sequential linear least-square problems with properly defined ball constraints. To validate the method, numerical simulations are presented to show the accuracy of the point-to-triangle distance. The registration algorithm also shows excellent robustness against misalignment of tens of millimeters/degrees. Finally measurement, registration, and grinding of a free-form optical surface are experimentally demonstrated. The surface error obtained after registration is used for compensatory grinding which reduces it to micron level.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: May 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off