Fast image retrieval using color-spatial information

Fast image retrieval using color-spatial information In this paper, we present an image retrieval system that employs both the color and spatial information of images to facilitate the retrieval process. The basic unit used in our technique is a single-colored cluster, which bounds a homogeneous region of that color in an image. Two clusters from two images are similar if they are of the same color and overlap in the image space. The number of clusters that can be extracted from an image can be very large, and it affects the accuracy of retrieval. We study the effect of the number of clusters on retrieval effectiveness to determine an appropriate value for “optimal'' performance. To facilitate efficient retrieval, we also propose a multi-tier indexing mechanism called the Sequenced Multi-Attribute Tree (SMAT). We implemented a two-tier SMAT, where the first layer is used to prune away clusters that are of different colors, while the second layer discriminates clusters of different spatial locality. We conducted an experimental study on an image database consisting of 12,000 images. Our results show the effectiveness of the proposed color-spatial approach, and the efficiency of the proposed indexing mechanism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Fast image retrieval using color-spatial information

Loading next page...
 
/lp/springer_journal/fast-image-retrieval-using-color-spatial-information-K5F79E9H3i
Publisher
Springer-Verlag
Copyright
Copyright © 1998 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s007780050057
Publisher site
See Article on Publisher Site

Abstract

In this paper, we present an image retrieval system that employs both the color and spatial information of images to facilitate the retrieval process. The basic unit used in our technique is a single-colored cluster, which bounds a homogeneous region of that color in an image. Two clusters from two images are similar if they are of the same color and overlap in the image space. The number of clusters that can be extracted from an image can be very large, and it affects the accuracy of retrieval. We study the effect of the number of clusters on retrieval effectiveness to determine an appropriate value for “optimal'' performance. To facilitate efficient retrieval, we also propose a multi-tier indexing mechanism called the Sequenced Multi-Attribute Tree (SMAT). We implemented a two-tier SMAT, where the first layer is used to prune away clusters that are of different colors, while the second layer discriminates clusters of different spatial locality. We conducted an experimental study on an image database consisting of 12,000 images. Our results show the effectiveness of the proposed color-spatial approach, and the efficiency of the proposed indexing mechanism.

Journal

The VLDB JournalSpringer Journals

Published: May 1, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off