Fast Calcium-Dependent Inactivation of Calcium Release-Activated Calcium Current (CRAC) in RBL-1 Cells

Fast Calcium-Dependent Inactivation of Calcium Release-Activated Calcium Current (CRAC) in RBL-1... Fast inactivation of the Ca2+ release-activated Ca2+ current (I CRAC) was studied using whole cell patch-clamp recordings in rat basophilic leukemia (RBL-1) cells. Application of hyperpolarizing voltage steps from the holding potential of 0 mV revealed that I CRAC declined in amplitude over tens of milliseconds during steps more negative than −40 mV. This fast inactivation was predominantly Ca2+-dependent because first, it could be more effectively suppressed when BAPTA was included in the recording pipette instead of EGTA and second, replacing external Ca2+ with Sr2+ resulted in less inactivation. Recovery from inactivation was faster in the presence of BAPTA than EGTA. The extent of fast inactivation was independent of the whole cell I CRAC amplitude, compatible with the notion that the inactivation arose from a local feedback inhibition by permeating Ca2+ ions only on the channel it permeated. Ca2+ release from stores did not affect fast inactivation, nor did FCɛRI receptor stimulation. Current clamp recordings showed that the majority of RBL cells had a membrane potential close to −90 mV following stimulation of FCɛRI receptors. Hence fast inactivation is likely to impact on the extent of Ca2+ influx through CRAC channels under physiological conditions and appears to be an important negative feedback process that limits Ca2+ increases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Fast Calcium-Dependent Inactivation of Calcium Release-Activated Calcium Current (CRAC) in RBL-1 Cells

Loading next page...
 
/lp/springer_journal/fast-calcium-dependent-inactivation-of-calcium-release-activated-vIHTiX5ijZ
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900493
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial