Fast and robust estimators of variance components in the nested error model

Fast and robust estimators of variance components in the nested error model Usual fitting methods for the nested error linear regression model are known to be very sensitive to the effect of even a single outlier. Robust approaches for the unbalanced nested error model with proved robustness and efficiency properties, such as M-estimators, are typically obtained through iterative algorithms. These algorithms are often computationally intensive and require robust estimates of the same parameters to start the algorithms, but so far no robust starting values have been proposed for this model. This paper proposes computationally fast robust estimators for the variance components under an unbalanced nested error model, based on a simple robustification of the fitting-of-constants method or Henderson method III. These estimators can be used as starting values for other iterative methods. Our simulations show that they are highly robust to various types of contamination of different magnitude. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Statistics and Computing Springer Journals

Fast and robust estimators of variance components in the nested error model

Loading next page...
 
/lp/springer_journal/fast-and-robust-estimators-of-variance-components-in-the-nested-error-tnSSwWucFf
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Statistics; Statistics and Computing/Statistics Programs; Artificial Intelligence (incl. Robotics); Statistical Theory and Methods; Probability and Statistics in Computer Science
ISSN
0960-3174
eISSN
1573-1375
D.O.I.
10.1007/s11222-016-9710-x
Publisher site
See Article on Publisher Site

Abstract

Usual fitting methods for the nested error linear regression model are known to be very sensitive to the effect of even a single outlier. Robust approaches for the unbalanced nested error model with proved robustness and efficiency properties, such as M-estimators, are typically obtained through iterative algorithms. These algorithms are often computationally intensive and require robust estimates of the same parameters to start the algorithms, but so far no robust starting values have been proposed for this model. This paper proposes computationally fast robust estimators for the variance components under an unbalanced nested error model, based on a simple robustification of the fitting-of-constants method or Henderson method III. These estimators can be used as starting values for other iterative methods. Our simulations show that they are highly robust to various types of contamination of different magnitude.

Journal

Statistics and ComputingSpringer Journals

Published: Oct 17, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off