Fast and accurate text classification via multiple linear discriminant projections

Fast and accurate text classification via multiple linear discriminant projections Support vector machines (SVMs) have shown superb performance for text classification tasks. They are accurate, robust, and quick to apply to test instances. Their only potential drawback is their training time and memory requirement. For n training instances held in memory, the best-known SVM implementations take time proportional to n a , where a is typically between 1.8 and 2.1. SVMs have been trained on data sets with several thousand instances, but Web directories today contain millions of instances that are valuable for mapping billions of Web pages into Yahoo!-like directories. We present SIMPL, a nearly linear-time classification algorithm that mimics the strengths of SVMs while avoiding the training bottleneck. It uses Fisher's linear discriminant, a classical tool from statistical pattern recognition, to project training instances to a carefully selected low-dimensional subspace before inducing a decision tree on the projected instances. SIMPL uses efficient sequential scans and sorts and is comparable in speed and memory scalability to widely used naive Bayes (NB) classifiers, but it beats NB accuracy decisively. It not only approaches and sometimes exceeds SVM accuracy, but also beats the running time of a popular SVM implementation by orders of magnitude. While describing SIMPL, we make a detailed experimental comparison of SVM-generated discriminants with Fisher's discriminants, and we also report on an analysis of the cache performance of a popular SVM implementation. Our analysis shows that SIMPL has the potential to be the method of choice for practitioners who want the accuracy of SVMs and the simplicity and speed of naive Bayes classifiers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Fast and accurate text classification via multiple linear discriminant projections

Loading next page...
 
/lp/springer_journal/fast-and-accurate-text-classification-via-multiple-linear-discriminant-E3peRCnlgT
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag
Subject
ComputerScience
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-003-0098-9
Publisher site
See Article on Publisher Site

Abstract

Support vector machines (SVMs) have shown superb performance for text classification tasks. They are accurate, robust, and quick to apply to test instances. Their only potential drawback is their training time and memory requirement. For n training instances held in memory, the best-known SVM implementations take time proportional to n a , where a is typically between 1.8 and 2.1. SVMs have been trained on data sets with several thousand instances, but Web directories today contain millions of instances that are valuable for mapping billions of Web pages into Yahoo!-like directories. We present SIMPL, a nearly linear-time classification algorithm that mimics the strengths of SVMs while avoiding the training bottleneck. It uses Fisher's linear discriminant, a classical tool from statistical pattern recognition, to project training instances to a carefully selected low-dimensional subspace before inducing a decision tree on the projected instances. SIMPL uses efficient sequential scans and sorts and is comparable in speed and memory scalability to widely used naive Bayes (NB) classifiers, but it beats NB accuracy decisively. It not only approaches and sometimes exceeds SVM accuracy, but also beats the running time of a popular SVM implementation by orders of magnitude. While describing SIMPL, we make a detailed experimental comparison of SVM-generated discriminants with Fisher's discriminants, and we also report on an analysis of the cache performance of a popular SVM implementation. Our analysis shows that SIMPL has the potential to be the method of choice for practitioners who want the accuracy of SVMs and the simplicity and speed of naive Bayes classifiers.

Journal

The VLDB JournalSpringer Journals

Published: Aug 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off