Fast, Accurate, and Stable Feature Selection Using Neural Networks

Fast, Accurate, and Stable Feature Selection Using Neural Networks Multi-voxel pattern analysis often necessitates feature selection due to the high dimensional nature of neuroimaging data. In this context, feature selection techniques serve the dual purpose of potentially increasing classification accuracy and revealing sets of features that best discriminate between classes. However, feature selection techniques in current, widespread use in the literature suffer from a number of deficits, including the need for extended computational time, lack of consistency in selecting features relevant to classification, and only marginal increases in classifier accuracy. In this paper we present a novel method for feature selection based on a single-layer neural network which incorporates cross-validation during feature selection and stability selection through iterative subsampling. Comparing our approach to popular alternative feature selection methods, we find increased classifier accuracy, reduced computational cost and greater consistency with which relevant features are selected. Furthermore, we demonstrate that importance mapping, a technique used to identify voxels relevant to classification, can lead to the selection of irrelevant voxels due to shared activation patterns across categories. Our method, owing to its relatively simple architecture, flexibility and speed, can provide a viable alternative for researchers to identify sets of features that best discriminate classes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroinformatics Springer Journals

Fast, Accurate, and Stable Feature Selection Using Neural Networks

Loading next page...
 
/lp/springer_journal/fast-accurate-and-stable-feature-selection-using-neural-networks-8a4tnjJVus
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Biomedicine; Neurosciences; Bioinformatics; Computational Biology/Bioinformatics; Computer Appl. in Life Sciences; Neurology
ISSN
1539-2791
eISSN
1559-0089
D.O.I.
10.1007/s12021-018-9371-3
Publisher site
See Article on Publisher Site

Abstract

Multi-voxel pattern analysis often necessitates feature selection due to the high dimensional nature of neuroimaging data. In this context, feature selection techniques serve the dual purpose of potentially increasing classification accuracy and revealing sets of features that best discriminate between classes. However, feature selection techniques in current, widespread use in the literature suffer from a number of deficits, including the need for extended computational time, lack of consistency in selecting features relevant to classification, and only marginal increases in classifier accuracy. In this paper we present a novel method for feature selection based on a single-layer neural network which incorporates cross-validation during feature selection and stability selection through iterative subsampling. Comparing our approach to popular alternative feature selection methods, we find increased classifier accuracy, reduced computational cost and greater consistency with which relevant features are selected. Furthermore, we demonstrate that importance mapping, a technique used to identify voxels relevant to classification, can lead to the selection of irrelevant voxels due to shared activation patterns across categories. Our method, owing to its relatively simple architecture, flexibility and speed, can provide a viable alternative for researchers to identify sets of features that best discriminate classes.

Journal

NeuroinformaticsSpringer Journals

Published: Mar 21, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off