Fast 3D PIV with direct sparse cross-correlations

Fast 3D PIV with direct sparse cross-correlations The extension of the well-assessed high-accuracy algorithms for two-dimensional-two components particle image velocimetry (PIV) to the case of three-dimensional (3D) data involves a considerable increase of the computational cost. Tomographic PIV is strongly affected by this issue, relying on 3D cross-correlation to estimate the velocity field. In this study, a number of solutions are presented, enabling a more efficient calculation of the velocity field without any significant loss of accuracy. A quick estimation of the predictor displacement field is proposed, based on voxels binning in the first steps of the process. The corrector displacement field is efficiently computed by restricting the search area of the correlation peak. In the initial part of the process, the calculation of a reduced cross-correlation map by using Fast Fourier Transform on blocks is suggested, in order to accelerate the processing by avoiding redundant calculations in case of overlapping interrogations windows. Eventually, direct cross-correlations with a search radius of only 1 pixel in the neighborhood of the estimated peak are employed; the final iterations are consistently faster, since direct correlations can better enjoy the sparsity of the distributions, reducing the number of operations to be performed. Furthermore, three different approaches to reduce the number of redundant calculations for overlapping windows are presented, based on pre-calculations of the contributions to the cross-correlations coefficients along segments, planes or blocks. The algorithms are tested both on synthetic and real images, showing that a potential speed-up of up to 800 times can be obtained, depending on the complexity of the flow field to be analyzed. The challenging application on a real swirling jet results in a speed-up of an order of magnitude. Experiments in Fluids Springer Journals

Fast 3D PIV with direct sparse cross-correlations

Loading next page...
Copyright © 2012 by Springer-Verlag
Engineering; Engineering Fluid Dynamics; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial