Fano resonances in bilayer graphene superlattices

Fano resonances in bilayer graphene superlattices In this work, we address the ubiquitous phenomenon of Fano resonances in bilayer graphene. We consider that this phenomenon is as exotic as other phenomena in graphene because it can arise without an external extended states source or elaborate nano designs. However, there are not theoretical and/or experimental studies that report the impact of Fano resonances on the transport properties. Here, we carry out a systematic assessment of the contribution of the Fano resonances on the transport properties of bilayer graphene superlattices. Specifically, we find that by changing the number of periods, adjusting the barriers height as well as modifying the barriers and wells width it is possible to identify the contribution of Fano resonances on the conductance. Particularly, the coupling of Fano resonances with the intrinsic minibands of the superlattice gives rise to specific and identifiable changes in the conductance. Moreover, by reducing the angular range for the computation of the transport properties it is possible to obtain conductance curves with line-shapes quite similar to the Fano profile and the coupling profile between Fano resonance and miniband states. In fact, these conductance features could serve as unequivocal characteristic of the existence of Fano resonances in bilayer graphene. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Fano resonances in bilayer graphene superlattices

Loading next page...
 
/lp/springer_journal/fano-resonances-in-bilayer-graphene-superlattices-x1wDLOtqUi
Publisher
Springer Journals
Copyright
Copyright © 2017 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-017-16838-9
Publisher site
See Article on Publisher Site

Abstract

In this work, we address the ubiquitous phenomenon of Fano resonances in bilayer graphene. We consider that this phenomenon is as exotic as other phenomena in graphene because it can arise without an external extended states source or elaborate nano designs. However, there are not theoretical and/or experimental studies that report the impact of Fano resonances on the transport properties. Here, we carry out a systematic assessment of the contribution of the Fano resonances on the transport properties of bilayer graphene superlattices. Specifically, we find that by changing the number of periods, adjusting the barriers height as well as modifying the barriers and wells width it is possible to identify the contribution of Fano resonances on the conductance. Particularly, the coupling of Fano resonances with the intrinsic minibands of the superlattice gives rise to specific and identifiable changes in the conductance. Moreover, by reducing the angular range for the computation of the transport properties it is possible to obtain conductance curves with line-shapes quite similar to the Fano profile and the coupling profile between Fano resonance and miniband states. In fact, these conductance features could serve as unequivocal characteristic of the existence of Fano resonances in bilayer graphene.

Journal

Scientific ReportsSpringer Journals

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off