Fair admission control scheme based on conditional preemption in traffic-groomed optical networks

Fair admission control scheme based on conditional preemption in traffic-groomed optical networks In optical-grooming networks, the capacity fairness issue can be resolved by utilizing a call admission control mechanism. Existing call admission control schemes are generally based on one of the four different techniques, namely static bandwidth reservation (SBR), static threshold setting (STS), mathematical statistics (MS), and Markov decision processing without buffer implementation (NB). However, irrespective of the technique used, a tradeoff exists between the network fairness and the network throughput. Accordingly, this article presents a conditional-preemption call admission control (CP-CAC) scheme designed to increase the network throughput while simultaneously maintaining the fairness. The CP-CAC method is based on a dynamic threshold setting concept and is implemented using a single connection buffer (C-Buf) and a set of virtual buffers (V-Bufs). In general CAC mechanisms, if the residual bandwidth is sufficient to satisfy a new request but some requests are already buffered, the new request can be treated in two different modes, i.e. with-preemption (WP) or without-preemption (NP). In contrast, in the CP-CAC scheme proposed in this study, a conditional-preemption (CP) mode is proposed in which statistical information about the blocking probability is used to determine the preempt (or not) decision. The simulation results show that compared to the NB call admission control mechanism, the proposed CP-CAC scheme improves the network throughput without sacrificing the fairness. In addition, the average waiting time induced by the buffer implementation is just 0.25 time units. Finally, it is shown that the proposed method ensures fairness in a variety of common network topologies, including 6 × 6 mesh-torus, NSF, and Cost 239. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Fair admission control scheme based on conditional preemption in traffic-groomed optical networks

Loading next page...
 
/lp/springer_journal/fair-admission-control-scheme-based-on-conditional-preemption-in-opSGN1CsL7
Publisher
Springer US
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Computer Science; Characterization and Evaluation of Materials; Electrical Engineering; Computer Communication Networks
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-010-0267-x
Publisher site
See Article on Publisher Site

Abstract

In optical-grooming networks, the capacity fairness issue can be resolved by utilizing a call admission control mechanism. Existing call admission control schemes are generally based on one of the four different techniques, namely static bandwidth reservation (SBR), static threshold setting (STS), mathematical statistics (MS), and Markov decision processing without buffer implementation (NB). However, irrespective of the technique used, a tradeoff exists between the network fairness and the network throughput. Accordingly, this article presents a conditional-preemption call admission control (CP-CAC) scheme designed to increase the network throughput while simultaneously maintaining the fairness. The CP-CAC method is based on a dynamic threshold setting concept and is implemented using a single connection buffer (C-Buf) and a set of virtual buffers (V-Bufs). In general CAC mechanisms, if the residual bandwidth is sufficient to satisfy a new request but some requests are already buffered, the new request can be treated in two different modes, i.e. with-preemption (WP) or without-preemption (NP). In contrast, in the CP-CAC scheme proposed in this study, a conditional-preemption (CP) mode is proposed in which statistical information about the blocking probability is used to determine the preempt (or not) decision. The simulation results show that compared to the NB call admission control mechanism, the proposed CP-CAC scheme improves the network throughput without sacrificing the fairness. In addition, the average waiting time induced by the buffer implementation is just 0.25 time units. Finally, it is shown that the proposed method ensures fairness in a variety of common network topologies, including 6 × 6 mesh-torus, NSF, and Cost 239.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Aug 5, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off