Failure surface of quasi-periodic masonry by means of Statistically Equivalent Periodic Unit Cell approach

Failure surface of quasi-periodic masonry by means of Statistically Equivalent Periodic Unit Cell... In this paper a homogenization procedure for the estimation of the failure surface of a quasi-periodic masonry, based on a mean stresses approach through the analysis of the Statistically Equivalent Periodic Unit Cell (SEPUC), is shown. The mean stresses approach consists in the identification of critical states for the homogenized continuum by means of an overall failure criterion, function of the mean stress state of each constituent. These macroscopic tensors are evaluated in the elastic field. The SEPUC definition refers to a statistical criterion applied to a population of Periodic Unit Cells generated taking into account the geometrical features of the quasi-periodic texture; moreover it is validated on the basis of the homogenized elastic properties in terms of components and Frobenius norm of the elastic matrix. By a multi-objective optimization approach, the obtained results highlight that the proposed SEPUC can be used to estimate the failure surface. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Meccanica Springer Journals

Failure surface of quasi-periodic masonry by means of Statistically Equivalent Periodic Unit Cell approach

Loading next page...
 
/lp/springer_journal/failure-surface-of-quasi-periodic-masonry-by-means-of-statistically-gArtdxUjhD
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Physics; Classical Mechanics; Civil Engineering; Automotive Engineering; Mechanical Engineering
ISSN
0025-6455
eISSN
1572-9648
D.O.I.
10.1007/s11012-017-0771-5
Publisher site
See Article on Publisher Site

Abstract

In this paper a homogenization procedure for the estimation of the failure surface of a quasi-periodic masonry, based on a mean stresses approach through the analysis of the Statistically Equivalent Periodic Unit Cell (SEPUC), is shown. The mean stresses approach consists in the identification of critical states for the homogenized continuum by means of an overall failure criterion, function of the mean stress state of each constituent. These macroscopic tensors are evaluated in the elastic field. The SEPUC definition refers to a statistical criterion applied to a population of Periodic Unit Cells generated taking into account the geometrical features of the quasi-periodic texture; moreover it is validated on the basis of the homogenized elastic properties in terms of components and Frobenius norm of the elastic matrix. By a multi-objective optimization approach, the obtained results highlight that the proposed SEPUC can be used to estimate the failure surface.

Journal

MeccanicaSpringer Journals

Published: Oct 11, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial