Failure strength prediction of aluminum spot-welded joints using kernel ridge regression

Failure strength prediction of aluminum spot-welded joints using kernel ridge regression The current paper presents an alternative method for failure strength prediction of spot-welded joints in aluminum, based on nonlinear regression analysis, namely, the kernel ridge regression method. Welding parameters such as electrode force, welding current, and welding time are studied in the experimental investigation to measure their effects on the nugget size and failure strength of the resistance spot welds. Coupons are manufactured and tensile tested and the results show that the welding current and time have the largest effect on the nugget size and the failure strength. The results of this study are compared to those of the least squares method and they indicate that the truncated-regularized kernel ridge regression algorithm significantly improves the coefficient of determination and reduces the mean squared error. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Failure strength prediction of aluminum spot-welded joints using kernel ridge regression

Loading next page...
 
/lp/springer_journal/failure-strength-prediction-of-aluminum-spot-welded-joints-using-lQSu5YVSzr
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0070-2
Publisher site
See Article on Publisher Site

Abstract

The current paper presents an alternative method for failure strength prediction of spot-welded joints in aluminum, based on nonlinear regression analysis, namely, the kernel ridge regression method. Welding parameters such as electrode force, welding current, and welding time are studied in the experimental investigation to measure their effects on the nugget size and failure strength of the resistance spot welds. Coupons are manufactured and tensile tested and the results show that the welding current and time have the largest effect on the nugget size and the failure strength. The results of this study are compared to those of the least squares method and they indicate that the truncated-regularized kernel ridge regression algorithm significantly improves the coefficient of determination and reduces the mean squared error.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Jan 27, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off