Access the full text.
Sign up today, get DeepDyve free for 14 days.
J. Pearce, M. Norry (1979)
Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocksContributions to Mineralogy and Petrology, 69
M. Robardet (2003)
The Armorica ‘microplate’: fact or fiction? Critical review of the concept and contradictory palaeobiogeographical dataPalaeogeography, Palaeoclimatology, Palaeoecology, 195
T. Feininger (2002)
Igneous Rocks: A Classification and Glossary of Terms (Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks).Second edition. Edited by R.W. LeMaitre. Cambridge University Press, New York, N.Y., 2002, 236 + xvi pages. US$65 (ISBN 0–521–66215–X).Canadian Mineralogist, 40
J Ebbestad, R Ove, J Frýda, PJ Wagner, RJ Horný, M Isakar, S Stewart, IG Percival, V Bertero, DM Rohr, JS Peel, RB Blodgett, AES Högström (2013)
Biogeography of Ordovician and Silurian gastropods, monoplacophorans and mimospiridsGeol Soc Lond Mem, 38
(1993)
Geochemistry of Early Paleozoic volcanics of the Barrandian Basin (Bohemian Massif, Czech Republic): implications for paleotectonic reconstructions
I. Rozkošný, V. Machovič, H. Pavlíková, Blanka Hemelíková (1994)
Chemical structure of migrabitumens from Silurian Crinoidea, Prague Basin, Barrandian (Bohemia)Organic Geochemistry, 21
(2010)
Whole-rock geochemistry of the Sv. Jan diabase sills and dykes in the Loděnice–Bubovice area
G. Stampfli, J. Raumer, C. Wilhem (2011)
The distribution of Gondwana-derived terranes in the Early Palaeozoic, 14
L. Cocks, T. Torsvik, T. Torsvik (2006)
European geography in a global context from the Vendian to the end of the PalaeozoicGeological Society, London, Memoirs, 32
M. Eriksson, O. Hints, H. Paxton, P. Tonarová (2013)
Chapter 18 Ordovician and Silurian polychaete diversity and biogeography, 38
B Kröger (2013)
Cambrian-Ordovician cephalopod palaeogeography and diversityGeol Soc Lond Mem, 38
M. Meschede (1986)
A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb1bZr1bY diagramChemical Geology, 56
F. Patočka, P. Pruner, P. Štorch (2003)
Palaeomagnetism and geochemistry of Early Palaeozoic rocks of the Barrandian (Teplá-Barrandian Unit, Bohemian Massif): palaeotectonic implicationsPhysics and Chemistry of The Earth, 28
W. Boynton (1984)
Cosmochemistry of the rare earth elements: meteorite studies., 2
I. Strachan (1964)
The Silurian periodGeological Society, London, Special Publications, 1
T. Torsvik, L. Cocks (2013)
Chapter 2 New global palaeogeographical reconstructions for the Early Palaeozoic and their generation, 38
J. Žák, K. Verner, V. Janoušek, F. Holub, V. Kachlík, F. Finger, J. Hajná, F. Tomek, L. Vondrovic, J. Trubač (2014)
A plate-kinematic model for the assembly of the Bohemian Massif constrained by structural relationships around granitoid plutons, 405
Michaela Halavínová, R. Melichar, M. Slobodník (2009)
Hydrothermal veins linked with the Variscan structure of the Prague Synform (Barrandien, Czech Republic): resolving fluid-wall rock interactionGeological Quarterly, 52
C. Pin, J. Zalduegui (1997)
Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: Application to isotopic analyses of silicate rocksAnalytica Chimica Acta, 339
(1981)
Development of a linear sedimentary depression exemplified by the Prague Basin (Ordovician–Middle Devonian; Barrandian area—central Bohemia)
(1994)
Perunica microcontinent in the Ordovician (its position within the Mediterranean Province, series division, benthic and pelagic associations)
J. Sláma, D. Dunkley, V. Kachlík, M. Kusiak (2008)
Transition from island-arc to passive setting on the continental margin of Gondwana: U–Pb zircon dating of Neoproterozoic metaconglomerates from the SE margin of the Teplá–Barrandian Unit, Bohemian MassifTectonophysics, 461
U. Linnemann, A. Gerdes, K. Drost, B. Buschmann (2007)
The continuum between Cadomian orogenesis and opening of the Rheic Ocean: Constraints from LA-ICP-MS U-Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, northeastern Bohemian Massif, Germany), 423
B. Cramer, M. Schmitz, W. Huff, S. Bergström (2015)
High-precision U–Pb zircon age constraints on the duration of rapid biogeochemical events during the Ludlow Epoch (Silurian Period)Journal of the Geological Society, 172
J. Ebbestad, J. Frýda, P. Wagner, R. Horný, M. Isakar, S. Stewart, I. Percival, V. Bertero, D. Rohr, J. Peel, R. Blodgett, Anette Högström (2013)
Chapter 15 Biogeography of Ordovician and Silurian gastropods, monoplacophorans and mimospirids, 38
(2004)
Paläogeographic und Provenance des Saxothuringikums unter besonderer Beachtung der Geochronologie von prävariszischen Zirkonen und der Nd-Isotopie von Sedimenten
(1998)
Cambrian/Ordovician intracontinental rifting and Devonian closure of the rifting generated basins in the Bohemian Massif realms
A. Halliday, Der-Chuen Lee, S. Tommasini, G. Davies, C. Paslick, J. Fitton, D. James (1995)
INCOMPATIBLE TRACE-ELEMENTS IN OIB AND MORB AND SOURCE ENRICHMENT IN THE SUB-OCEANIC MANTLEEarth and Planetary Science Letters, 133
Krš, Pruner (1995)
Palaeomagnetism and palaeogeography of the Variscan formations of the Bohemian Massif, comparison with other European regionsJournal of Geosciences, 40
B. Kamber, K. Collerson (2000)
Zr/Nb Systematics of Ocean Island Basalts Reassessed—the Case for Binary MixingJournal of Petrology, 41
M. Abt (2016)
Igneous Petrogenesis A Global Tectonic Approach
J. Hajná, J. Žák, V. Kachlík, M. Chadima (2012)
Deciphering the Variscan tectonothermal overprint and deformation partitioning in the Cadomian basement of the Teplá–Barrandian unit, Bohemian MassifInternational Journal of Earth Sciences, 101
F Fiala (1970)
Silurian and Devonian diabases of the Barrandian BasinJ Geol Sci Geol, 17
J. Raumer, G. Stampfli, G. Borel, F. Bussy (2002)
Organization of pre-Variscan basement areas at the north-Gondwanan marginInternational Journal of Earth Sciences, 91
O. Fatka, M. Mergl (2009)
The ‘microcontinent’ Perunica: status and story 15 years after conception, 325
Michael Johnson, S. Harley (2012)
Orogenesis: The Making of Mountains
M. Bassett (2009)
Early Palaeozoic peri-Gondwana terranes: new insights from tectonics and biogeography, 325
JF Dewey, RA Strachan (2003)
Changing Silurian–Devonian relative plate motion in the Caledonides: sinistral transpression to sinistral transtensionJ Geol Soc Lond, 160
T. Elbra, P. Schnabl, Z. Tasáryová, K. Čížková, P. Pruner (2015)
New results for Palaeozoic volcanic phases in the Prague Basin - magnetic and geochemical studies of Lištice, Czech RepublicEstonian Journal of Earth Sciences, 64
A. KOZŁOWSKA-DAWIDZIUK, A. Lenz, P. Štorch (2001)
UPPER WENLOCK AND LOWER LUDLOW (SILURIAN), POST-EXTINCTION GRAPTOLITES, VŠERADICE SECTION, BARRANDIAN AREA, CZECH REPUBLIC, 75
G. Zulauf, F. Schitter, G. Riegler, F. Finger, J. Fiala, Z. Vejnar (2000)
Age constraints on the Cadomian evolution of the Teplà Barrandian unit (Bohemian Massif) through electron microprobe dating of metamorphic monazite, 150
G. Zulauf (1997)
Von der Anchizone bis zur Eklogitfazies
D. DePaolo (1988)
Neodymium Isotope Geochemistry
T. Torsvik, M. Smethurst, J. Meert, R. Voo, W. Mckerrow, M. Brasier, B. Sturt, H. Walderhaug (1996)
Continental break-up and collision in the Neoproterozoic and Palaeozoic — A tale of Baltica and LaurentiaEarth-Science Reviews, 40
G. Lugmair, K. Marti (1978)
Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantleEarth and Planetary Science Letters, 39
M Krs, P Pruner (1995)
Palaeomagnetism and palaeogeography of the Variscan formations of the Bohemian Massif, comparison with other European regionsJ Czech Geol Soc, 40
J Filip, V Suchý (2004)
Thermal and tectonic history of the Barrandian Lower Palaeozoic, Czech Republic: is there a fission-track evidence for Carboniferous–Permian overburden and pre-Westphalian Alpinotype thrusting?B Geosci, 79
W. Franke (2006)
The Variscan orogen in Central Europe: construction and collapseGeological Society, London, Memoirs, 32
J. Shervais (1982)
Ti-V plots and the petrogenesis of modern and ophiolitic lavasEarth and Planetary Science Letters, 59
S. Molyneux, A. Delabroye, R. Wicander, T. Servais (2013)
Chapter 23 Biogeography of early to mid Palaeozoic (Cambrian–Devonian) marine phytoplankton, 38
G. Faure, T. Mensing (2004)
Isotopes: Principles and Applications
W. Dörr, G. Zulauf, J. Fiala, W. Franke, Z. Vejnar (2002)
Neoproterozoic to Early Cambrian history of an active plate margin in the Teplá Barrandian unit—a correlation of U Pb isotopic-dilution-TIMS ages (Bohemia, Czech Republic)Tectonophysics, 352
A. Hofmann (1997)
Mantle geochemistry: the message from oceanic volcanismNature, 385
J. Loeschke (1989)
Lower Palaeozoic volcanism of the Eastern Alps and its geodynamic implicationsGeologische Rundschau, 78
D. McKenzie, R. O’nions (1998)
Melt production beneath oceanic islandsPhysics of the Earth and Planetary Interiors, 107
J. Chaloupský (1978)
The Precambrian tectogenesis in the Bohemian MassifGeologische Rundschau, 67
P. Floyd, J. Winchester, R. Seston, R. Kryza, Q. Crowley (2000)
Review of geochemical variation in Lower Palaeozoic metabasites from the NE Bohemian Massif: intracratonic rifting and plume-ridge interactionGeological Society, London, Special Publications, 179
(1986)
Chemical geodynamics
(1975)
A contribution to geology of volcanites in the area between Jinonice and Řeporyje
J. Raumer, G. Stampfli (2008)
The birth of the Rheic Ocean — Early Palaeozoic subsidence patterns and subsequent tectonic plate scenariosTectonophysics, 461
Z. Tasáryová, J. Frýda, V. Janoušek, M. Racek (2014)
Slawsonite-celsian-hyalophane assemblage from a picrite sill (Prague Basin, Czech Republic)American Mineralogist, 99
(2010)
The evaluation of precision and relative error of the main components
BD Cramer, MD Schmitz, WD Huff, SM Bergström (2015)
High-precision U-Pb zircon age constraints on the duration of rapid biogeochemical events during the Ludlow Epoch (Silurian Period)J Geol Soc Lond, 172
P. Štorch, Š. Manda, D. Loydell (2014)
The early Ludfordian leintwardinensis graptolite Event and the Gorstian–Ludfordian boundary in Bohemia (Silurian, Czech Republic)Palaeontology, 57
K. Schulmann, O. Lexa, V. Janoušek, J. Lardeaux, J. Edel (2014)
Anatomy of a diffuse cryptic suture zone: An example from the Bohemian Massif, European VariscidesGeology, 42
Shen-su Sun, W. McDonough (1989)
Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processesGeological Society, London, Special Publications, 42
G. Stampfli, J. Raumer, G. Borel (2002)
Paleozoic evolution of pre-Variscan terranes : From Gondwana to the Variscan collision, 364
S. Berkyová (2009)
Lower-Middle Devonian (upper Emsian-Eifelian, serotinus-kockelianus zones) conodont faunas from the Prague Basin, the Czech RepublicBulletin of Geosciences
D. Goldman, J. Maletz, M. Melchin, Fan Junxuan (2013)
Chapter 26 Graptolite palaeobiogeography, 38
K. Drost, A. Gerdes, T. Jeffries, U. Linnemann, C. Storey (2011)
Provenance of Neoproterozoic and early Paleozoic siliciclastic rocks of the Teplá-Barrandian unit (Bohemian Massif): Evidence from U–Pb detrital zircon agesGondwana Research, 19
R. Kryza, C. Pin (2010)
The Central-Sudetic ophiolites (SW Poland): Petrogenetic issues, geochronology and palaeotectonic implicationsGondwana Research, 17
(1976)
The Silurian doleritic diabases and ultrabasic rocks of the Barrandian area
(2012)
Spodnoordovický vulkanismus strašického / komárovského komplexu a vulkanismus svatoján - ského vulkanického centra . Sbor Západočes Muz ( Plzeň )
(1998)
Palaeozoic of the Barrandian (Cambrian to Devonian)
U Kroner, JL Mansy, S Mazur, P Aleksandrowski, HP Hann, H Huckriede, F Lacquement, J Lamarche, P Ledru, TC Pharao, H Zedler, A Zeh, G Zulauf (2008)
Geology of Central Europe
B. Cramer, D. Condon, U. Söderlund, C. Marshall, G. Worton, Alan Thomas, M. Calner, David Ray, V. Perrier, I. Boomer, P. Patchett, L. Jeppsson (2012)
U-Pb (zircon) age constraints on the timing and duration of Wenlock (Silurian) paleocommunity collapse and recovery during the “Big Crisis”Geological Society of America Bulletin, 124
J. Tait, V. Bachtadse, H. Soffel (1995)
Upper Ordovician palaeogeography of the Bohemian Massif: implications for ArmoricaGeophysical Journal International, 122
V. Janoušek, C. Farrow (2006)
TECHNICAL NOTE Interpretation of Whole-rock Geochemical Data in Igneous Geochemistry: Introducing Geochemical Data Toolkit (GCDkit)
ME Eriksson, O Hints, H Paxton, P Tonarová (2013)
Ordovician and Silurian polychaete diversity and biogeographyGeol Soc Lond Mem, 38
B. Kröger (2013)
Chapter 27 Cambrian–Ordovician cephalopod palaeogeography and diversity, 38
(1991)
The Silurian of the Prague Basin (Bohemia)—tectonic, eustatic and volcanic controls on facies and faunal development
(1966)
Silurské diabasové vulkanity úseku Loděnice-Bubovice
V. Suchý, I. Sýkorová, K. Melka, J. Filip, V. Machovič (2007)
Illite ‘crystallinity’, maturation of organic matter and microstructural development associated with lowest-grade metamorphism of Neoproterozoic sediments in the Teplá -Barrandian unit, Czech RepublicClay Minerals, 42
JB Edel, K Schulmann, FV Holub (2003)
Anticlockwise and clockwise rotations of the Eastern Variscides accommodated by dextral lithospheric wrenching: palaeomagnetic and structural evidenceJ Geol Soc Lond, 170
J. Wilkinson, R. Maitre (1987)
Upper Mantle Amphiboles and Micas and TiO2, K2O, and P2O5 Abundances and 100 Mg/(Mg+Fe2+ Ratios of Common Basalts and Andesites: Implications for Modal Mantle Metasomatism and Undepleted Mantle CompositionsJournal of Petrology, 28
J. Bendl, K. Vokurka, B. Sundvoll (1993)
Strontium and neodymium isotope study of Bohemian basaltsMineralogy and Petrology, 48
D. Anderson (1995)
Lithosphere, asthenosphere, and perisphereReviews of Geophysics, 33
M. Bas, R. Maitre, A. Streckeisen, B. Zanettin (1986)
A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica DiagramJournal of Petrology, 27
K. Drost (2007)
Sources and geotectonic setting of late neoproterozoic : early palaeozoic volcano-sedimentary successions of the Teplá-Barrandian unit (Bohemian Massif) : Evidence from petrographical, geochemical, and isotope analyses
J. Pearce (2008)
Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crustLithos, 100
C. Pin, J. Waldhausrová (2007)
Sm-Nd isotope and trace element study of Late Proterozoic metabasalts (“spilites”) from the Central Barrandian domain (Bohemian Massif, Czech Republic), 423
Tsuyoshi Tanaka, S. Togashi, H. Kamioka, H. Amakawa, H. Kagami, T. Hamamoto, M. Yuhara, Y. Orihashi, S. Yoneda, H. Shimizu, T. Kunimaru, Kazuya Takahashi, T. Yanagi, T. Nakano, H. Fujimaki, R. Shinjo, Y. Asahara, M. Tanimizu, C. Drăguşanu (2000)
JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymiumChemical Geology, 168
J. Kotková, P. O'Brien, M. Ziemann (2010)
Diamond and coesite discovered in Saxony-type granulite: Solution to the Variscan garnet peridotite enigmaGeology, 39
T. Vallance (1974)
Spilitic Degradation of a Tholeiitic BasaltJournal of Petrology, 15
(1971)
The chemistry of the Cambrian volcanics in the Barrandian area
R. Gill (2010)
Igneous Rocks and Processes: A Practical Guide
R. Nance, J. Murphy (1994)
Contrasting basement isotopic signatures and the palinspastic restoration of peripheral orogens: Example from the Neoproterozoic Avalonian-Cadomian beltGeology, 22
J. Winchester, P. Floyd (1977)
Geochemical discrimination of different magma series and their differentiation products using immobile elementsChemical Geology, 20
(1948)
O stratigrafii a tektonice staršího paleozoika v okolí Chýnice
J. Hajná, J. Žák, V. Kachlík, W. Dörr, A. Gerdes (2013)
Neoproterozoic to early Cambrian Franciscan-type mélanges in the Teplá–Barrandian unit, Bohemian Massif: Evidence of modern-style accretionary processes along the Cadomian active margin of Gondwana?Precambrian Research, 224
J. Košler, J. Konopásek, J. Sláma, S. Vrána (2013)
U–Pb zircon provenance of Moldanubian metasediments in the Bohemian MassifJournal of the Geological Society, 171
J. Míková, P. Denkova (2012)
Modified chromatographic separation scheme for Sr and Nd isotope analysis in geological silicate samplesJournal of Geosciences, 52
T. Aïfa, P. Pruner, M. Chadima, P. Štorch (2007)
Structural evolution of the Prague synform (Czech Republic) during Silurian times: An AMS, rock magnetism, and paleomagnetic study of the Svatý Jan pod Skalou dikes. Consequences for the nappes emplacement, 423
(2000)
Neoproterozoic of the Teplá–Barrandian Unit as a part of the Cadomian orogenic belt: a review and correlation aspects
G. Wasserburg, S. Jacobsen, D. DePaolo, M. McCulloch, T. Wen (1981)
Precise determination of SmNd ratios, Sm and Nd isotopic abundances in standard solutions☆Geochimica et Cosmochimica Acta, 45
J. Žák, P. Kraft, J. Hajná (2013)
Timing, styles, and kinematics of Cambro–Ordovician extension in the Teplá–Barrandian Unit, Bohemian Massif, and its bearing on the opening of the Rheic OceanInternational Journal of Earth Sciences, 102
J. Pearce (1982)
Trace element characteristics of lavas from destructive plate boundaries
L. Cocks, T. Torsvik (2002)
Earth geography from 500 to 400 million years ago: a faunal and palaeomagnetic reviewJournal of the Geological Society, 159
W. Franke (1989)
Variscan plate tectonics in Central Europe—current ideas and open questionsTectonophysics, 169
WV Boynton (1984)
Rare earth element geochemistry
T. Torsvik, E. Rehnström (2003)
The Tornquist Sea and Baltica Avalonia dockingTectonophysics, 362
H. Brueckner, H. Roermund (2004)
Dunk tectonics: A multiple subduction/eduction model for the evolution of the Scandinavian CaledonidesTectonics, 23
(1975)
The norm, its variations, their calculation and relationships
L. Strnad, M. Mihaljevič (2005)
Sedimentary provenance of Mid-Devonian clastic sediments in the Teplá-Barrandian Unit (Bohemian Massif): U–Pb and Pb–Pb geochronology of detrital zircons by laser ablation ICP-MSMineralogy and Petrology, 84
(1999)
To the paleomagnetic investigations of paleogeography of the Barrandian Terrane, Bohemian Massif
V. Suchý, P. Dobes, J. Filip, M. Stejskal, A. Zeman (2002)
Conditions for veining in the Barrandian Basin (Lower Palaeozoic), Czech Republic: evidence from fluid inclusion and apatite fission track analysisTectonophysics, 348
Š. Manda, P. Štorch, L. Slavík, J. Frýda, J. Kriz, Z. Tasáryová (2011)
The graptolite, conodont and sedimentary record through the late Ludlow Kozlowskii Event (Silurian) in the shale-dominated succession of BohemiaGeological Magazine, 149
K. Schulmann, J. Konopásek, V. Janoušek, O. Lexa, J. Lardeaux, J. Edel, P. Štípská, S. Ulrich (2009)
An Andean type Palaeozoic convergence in the Bohemian MassifComptes Rendus Geoscience, 341
T. Liew, A.W Hofmann (1988)
Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: Indications from a Nd and Sr isotopic studyContributions to Mineralogy and Petrology, 98
F Fiala (1947)
Diabasové pikrity v Barrandienu (Mořinka, Rovina, Sedlec)Věst Král Čes Společ nauk, 19
P. Štorch (2007)
Graptolite biostratigraphy of the Lower Silurian (Llandovery and Wenlock) of BohemiaGeological Journal, 29
John Dewey, R. Strachan (2003)
Changing Silurian–Devonian relative plate motion in the Caledonides: sinistral transpression to sinistral transtensionJournal of the Geological Society, 160
M. Krs, P. Pruner, O. Man (2001)
Tectonic and paleogeographic interpretation of the paleomagnetism of Variscan and pre-Variscan formations of the Bohemian Massif, with special reference to the Barrandian terraneTectonophysics, 332
J. Kriz, J. Dégardin, A. Ferretti, W. Hansch, J. Gutiérrez-Marco, P. Paris, J. Piçarra, M. Rodardet, H. Schõnlaub, E. Serpagli (2003)
Silurian stratigraphy and paleogeography of north Gondwanan and Perunican Europe, 493
V. Babuška, J. Plomerová (2013)
Boundaries of mantle-lithosphere domains in the Bohemian Massif as extinct exhumation channels for high-pressure rocksGondwana Research, 23
W. Boynton (1984)
Geochemistry of the rare earth elements : meteorite studies
(2000)
Graptolites, stratigraphy and depositional setting of the middle Llandovery (Silurian) volcanic-carbonate facies at Hýskov (Barrandian area, Czech Republic)
(1971)
Ordovician diabase volcanism and biotite lamprophyres of the Barrandian
C. Pin, A. Majerowicz, I. Wojciechowska (1988)
Upper Paleozoic oceanic crust in the Polish Sudetes: NdSr isotope and trace element evidenceLithos, 21
R. Nance, J. Murphy, R. Strachan, R. D'lemos, G. Taylor (1991)
Late Proterozoic tectonostratigraphic evolution of the Avalonian and Cadomian terranesPrecambrian Research, 53
U. Linnemann, R. D'lemos, K. Drost, T. Jeffries, A. Gerdes, R. Romer, S. Samson, R. Strachan (2008)
The Cadomian tectonics
J. Tait, V. Bachtadse, H. Soffel (1994)
Silurian paleogeography of Armorica: New paleomagnetic data from central BohemiaJournal of Geophysical Research, 99
T. Pharaoh (1999)
Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): a reviewTectonophysics, 314
J. Edel, K. Schulmann, E. Skrzypek, A. Cocherie (2013)
Tectonic evolution of the European Variscan belt constrained by palaeomagnetic, structural and anisotropy of magnetic susceptibility data from the Northern Vosges magmatic arc (eastern France)Journal of the Geological Society, 170
Z. Skácelová, Z. Tasáryová (2009)
DIGITAL ELEVATION MODEL OF THE CRYSTALLINE BASEMENT AND PERMO-CARBONIFEROUS SURFACE ( BOHEMIAN MASSIF , NE PART OF THE CZECH REPUBLIC )
K. Drost, U. Linnemann, N. McNaughton, O. Fatka, P. Kraft, M. Gehmlich, C. Tonk, J. Marek (2004)
New data on the Neoproterozoic – Cambrian geotectonic setting of the Teplá-Barrandian volcano-sedimentary successions: geochemistry, U-Pb zircon ages, and provenance (Bohemian Massif, Czech Republic)International Journal of Earth Sciences, 93
W Dörr, G Zulauf (2010)
Elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zoneGeol Rundsch, 99
Q. Crowley, P. Floyd, J. Winchester, W. Franke, J. Holland (2000)
Early Palaeozoic rift‐related magmatism in Variscan Europe: fragmentation of the Armorican Terrane AssemblageTerra Nova, 12
J. Winchester (2002)
Palaeozoic amalgamation of Central Europe: new results from recent geological and geophysical investigationsTectonophysics, 360
J. Prytulak, T. Elliott (2007)
TiO 2 enrichment in ocean island basaltsEarth and Planetary Science Letters, 263
G. Kletetschka, P. Schnabl, Kristýna Šifnerová, Z. Tasáryová, Š. Manda, P. Pruner (2012)
Magnetic scanning and interpretation of paleomagnetic data from Prague Synform’s volcanicsStudia Geophysica et Geodaetica, 57
RW Maitre (2005)
Igneous rocks—a classification and glossary of terms. Recommendations of the IUGS subcommission on the systematics of igneous rocks
LRM Cocks, TH Torsvik (2002)
Earth geography from 500 to 400 million years ago: a faunal and paleomagnetic reviewJ Geol Soc Lond, 159
B. Cramer, T. Vandenbroucke, G. Ludvigson (2015)
High-Resolution Event Stratigraphy (HiRES) and the quantification of stratigraphic uncertainty: Silurian examples of the quest for precision in stratigraphyEarth-Science Reviews, 141
J. Hajná, J. Žák, V. Kachlík (2014)
Growth of accretionary wedges and pulsed ophiolitic mélange formation by successive subduction of trench‐parallel volcanic elevationsTerra Nova, 26
G. Zulauf, Wolfgang Doerr, J. Fiala, Z. Vejnar (1997)
Late Cadomian crustal tilting and Cambrian transtension in the Teplá–Barrandian unit (Bohemian Massif, Central European Variscides)Geologische Rundschau, 86
S. Jacobsen, G. Wasserburg (1980)
Sm-Nd isotopic evolution of chondritesEarth and Planetary Science Letters, 50
(1947)
Diabasové pikrity v Barrandienu (Mořinka, Rovina, Sedlec). Věst Král Čes Společ nauk 19:1–55
U Linnemann, M Hofmann, RL Romer, A Gerdes (2010)
Pre-Mesozoic geology of Saxo-Thuringia—from the Cadomian Active Margin to the Variscan Orogen
D. Wyman, A. Bailes (1996)
Trace element geochemistry of volcanic rocks : applications for massive sulphide exploration
L Dempírová, J Šikl, R Kašičková, V Zoulková, B Kříbek (2010)
The evaluation of precision and relative error of the main components of silicate analyses in Central Laboratory of the Czech Geological SurveyGeosci Res Rep, 2009
Michael O'Hara (1977)
Geochemical evolution during fractional crystallisation of a periodically refilled magma chamberNature, 266
Z. Skácelová, Z. Tasáryová (2011)
DIGITAL MODEL OF THE CRYSTALLINE BASEMENT AND PERMO-CARBONIFEROUS VOLCANO-SEDIMENTARY STRATA IN THE MNICHOVO HRADIŠTĚ BASIN AND CORRELATION WITH THE GEOPHYSICAL FIELDS (CZECH REPUBLIC, NORTHERN BOHEMIA)
J Kříž (1992)
Silurian Field Excursions. Prague Basin (Barrandian)Bohemia Geol Ser Nation Mus Wales, 13
J. Vannier (1993)
Silurian field excursions-prague Basin (Barrandian), bohemiaGeobios, 26
J. Raumer, F. Finger, P. Veselá, G. Stampfli (2014)
Durbachites–Vaugnerites – a geodynamic marker in the central European Variscan orogenTerra Nova, 26
R. Nance, G. Gutiérrez-Alonso, J. Keppie, U. Linnemann, J. Murphy, C. Quesada, R. Strachan, N. Woodcock (2008)
Evolution of the Rheic OceanTectonophysics, 461
P. Matte, H. Maluski, P. Rajlich, W. Franke (1990)
Terrane boundaries in the Bohemian Massif: Result of large-scale Variscan shearingTectonophysics, 177
P. Matte (1986)
Tectonics and plate tectonics model for the Variscan belt of EuropeTectonophysics, 126
D. Wood (1980)
The application of a ThHfTa diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic ProvinceEarth and Planetary Science Letters, 50
(2008)
Paleozoic magmatism. In: McCann T (ed) Geology of Central Europe
U. Kroner, R. Romer (2013)
Two plates — Many subduction zones: The Variscan orogeny reconsideredGondwana Research, 24
C. Pin, D. Briot, C. Bassin, F. Poitrasson (1994)
Concomitant separation of strontium and samarium-neodymium for isotopic analysis in silicate samples, based on specific extraction chromatographyAnalytica Chimica Acta, 298
Z. Tasáryová, P. Schnabl, K. Čížková, P. Pruner, V. Janoušek, V. Rapprich, P. Štorch, Š. Manda, Jirˇí Frýda, J. Trubač (2014)
Gorstian palaeoposition and geotectonic setting of Suchomasty Volcanic Centre (Silurian, Prague Basin, Teplá-Barrandian Unit, Bohemian Massif)GFF, 136
S. Taylor, S. McLennan (1995)
The geochemical evolution of the continental crustReviews of Geophysics, 33
V Janoušek, MC Farrow, V Erban (2006)
Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit)J Petrol, 47
F. Tomek, J. Žák, M. Chadima (2015)
Granitic magma emplacement and deformation during early-orogenic syn-convergent transtension: The Staré Sedlo complex, Bohemian MassifJournal of Geodynamics, 87
Wolfgang Doerr, G. Zulauf (2010)
Elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zoneInternational Journal of Earth Sciences, 99
C. Pin, R. Kryza, T. Oberc-Dziedzic, S. Mazur, K. Turniak, J. Waldhausrová (2007)
The diversity and geodynamic significance of Late Cambrian (ca. 500 Ma) felsic anorogenic magmatism in the northern part of the Bohemian Massif: A review based on Sm-Nd isotope and geochemical data, 423
T. Meidla, O. Tinn, M. Salas, M. Williams, D. Siveter, T. Vandenbroucke, K. Sabbe (2013)
Chapter 21 Biogeographical patterns of Ordovician ostracods, 38
P. Matte (2001)
The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a reviewTerra Nova, 13
J Košler, J Konopásek, J Sláma, S Vrána (2014)
U-Pb zircon provenance of Moldanubian metasediments in the Bohemian MassifJ Geol Soc London, 171
(1973)
Upper Llandovery and Lower Devonian near Hýskov (Barrandian)
J. Edel, K. Schulmann, F. Holub (2003)
Anticlockwise and clockwise rotations of the Eastern Variscides accommodated by dextral lithospheric wrenching: palaeomagnetic and structural evidenceJournal of the Geological Society, 160
S. Foley (1992)
Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmasLithos, 28
J. Murphy, G. Gutiérrez-Alonso, R. Nance, J. Fernández-Suárez, J. Keppie, C. Quesada, R. Strachan, J. Dostal (2006)
Origin of the Rheic Ocean: rifting along a Neoproterozoic suture?Geology, 34
D Goldman, J Maletz, MJ Melchin, JX Fan (2013)
Graptolite palaeobiogeographyGeol Soc Lond Mem, 38
J. Hajná, J. Žák, V. Kachlík (2011)
Structure and stratigraphy of the Teplá–Barrandian Neoproterozoic, Bohemian Massif: A new plate-tectonic reinterpretationGondwana Research, 19
M. Bas (2000)
IUGS Reclassification of the High-Mg and Picritic Volcanic RocksJournal of Petrology, 41
P. Comin-Chiaramonti, E. Ruberti, A. Cundari (2008)
Genesis of Analcime and Nepheline-Potassium Feldspar-Kalsilite Intergrowths : A Review
The Silurian volcanic rocks of the Prague Basin represent within-plate, transitional alkali to tholeiitic basalts, which erupted in a continental rift setting through the thick Cadomian crust of the Teplá–Barrandian Unit (Bohemian Massif). Despite the variable, often intense alteration resulting in post-magmatic replacement of the basalt mass due to carbonatization, the geochemical signatures of Silurian basalts are still sufficiently preserved to constrain primary magmatic processes and geotectonic setting. The studied interval of Silurian volcanic activity ranges from Wenlock (Homerian, ~431 Ma) to late Ludlow (Gorstian, ~425 Ma) with a distinct peak at the Wenlock/Ludlow boundary (~428 Ma). Trace-element characteristics unambiguously indicate partial melting of a garnet peridotite mantle source. Wenlock basalts are similar to alkaline OIB with depleted radiogenic Nd signature compared to Ludlow basalts, which are rather tholeiitic, EMORB-like with enriched radiogenic Nd signature. The correlation of petrogenetically significant trace-element ratios with Nd isotopic compositions points to a mixing of partial melts of an isotopically heterogeneous, possibly two-component mantle source during the Wenlock–Ludlow melting. Lava eruptions were accompanied by intrusions of doleritic basalt and meimechite sills. The latter represent olivine-rich cumulates of basaltic magmas of probably predominantly Ludlow age. Meimechites with dolerites and, to a lesser extent, some lavas were subject to alteration due to wall-rock–fluid interaction. The trigger for the Wenlock-to-Ludlow (431–425 Ma) extension and related volcanism in the Prague Basin is related to far-field forces, namely slab-pull regime due to progressive closure of the Iapetus Ocean. The main stage of the Baltica–Laurentia collision then caused the Prague Basin rift failure at ca. 425 Ma that has never reached an oceanic stage.
International Journal of Earth Sciences – Springer Journals
Published: Sep 20, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.