Fail-safe testing of safety-critical systems: a case study and efficiency analysis

Fail-safe testing of safety-critical systems: a case study and efficiency analysis This paper proposes an approach for testing of safety-critical systems. It is based on a behavioral and a fault model. The two models are analyzed for compatibility, and necessary changes are identified to make them compatible. Then, transformation rules are used to transform the fault model into the same model type as the behavioral model. Integration rules define how to combine them. This approach results in an integrated model which then can be used to generate tests using a variety of testing criteria. The paper illustrates this general framework using a CEFSM for the behavioral model and a fault tree for the fault model. We apply the technique to an aerospace launch system. We also investigate the scalability of the approach and compare its efficiency with integrating a state chart and a fault tree. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Software Quality Journal Springer Journals

Fail-safe testing of safety-critical systems: a case study and efficiency analysis

Loading next page...
 
/lp/springer_journal/fail-safe-testing-of-safety-critical-systems-a-case-study-and-XR7kSKAjry
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Computer Science; Software Engineering/Programming and Operating Systems; Programming Languages, Compilers, Interpreters; Data Structures, Cryptology and Information Theory; Operating Systems
ISSN
0963-9314
eISSN
1573-1367
D.O.I.
10.1007/s11219-015-9283-5
Publisher site
See Article on Publisher Site

Abstract

This paper proposes an approach for testing of safety-critical systems. It is based on a behavioral and a fault model. The two models are analyzed for compatibility, and necessary changes are identified to make them compatible. Then, transformation rules are used to transform the fault model into the same model type as the behavioral model. Integration rules define how to combine them. This approach results in an integrated model which then can be used to generate tests using a variety of testing criteria. The paper illustrates this general framework using a CEFSM for the behavioral model and a fault tree for the fault model. We apply the technique to an aerospace launch system. We also investigate the scalability of the approach and compare its efficiency with integrating a state chart and a fault tree.

Journal

Software Quality JournalSpringer Journals

Published: Jul 23, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off