Facile synthesis of Ti-TUD-1 for catalytic oxidative desulfurization of model sulfur compounds

Facile synthesis of Ti-TUD-1 for catalytic oxidative desulfurization of model sulfur compounds A facile synthesis route for Ti-TUD-1 at room temperature employing silatrane and titanium glycolate as Si and Ti sources (2–8 mol%), respectively, over a triethanolamine template is proposed. XRD, N2 adsorption–desorption isotherms, and TEM analysis confirmed disordered mesoporous structures with high surface area (715–824 m2/g). According to the UV–visible spectroscopy of the calcined materials, titanium species of ca. 2.7 mol% Ti loading were present mostly in tetrahedral coordination for a sample prepared with 4 mol% Ti in the substrate mixture. Ti-TUD-1 showed catalytic activity in cyclohexene epoxidation, which depended on the amount of tetrahedrally coordinated Ti species. The hydrophilic nature of the surface of Ti-TUD-1 was confirmed by the effect of oxidant such that tert-butyl hydroperoxide (TBHP, 5–6 M in decane) was superior to other oxidants in water (cyclohexene conversion: TBHP in decane 36.5% vs. TBHP in water 30.6%). Ti-TUD-1 was more active in oxidative desulfurization (ODS) reaction than Ti-MCM-41 at the same Ti loading; the former produced 4,6-dimethyldibenzothiophene (4,6-DMDBT) conversion near 100% after reacting for 15 min, whereas Ti-MCM-41 produced final conversion of 4,6-DMDBT of 89% after reacting for 180 min. ODS over Ti-TUD-1 was influenced both by electron density and steric hindrance in model sulfur compounds. Partially polymerized Ti sites seemed to also contribute to the reaction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Facile synthesis of Ti-TUD-1 for catalytic oxidative desulfurization of model sulfur compounds

Loading next page...
 
/lp/springer_journal/facile-synthesis-of-ti-tud-1-for-catalytic-oxidative-desulfurization-phxeekUXdE
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Physical Chemistry; Inorganic Chemistry; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0393-9
Publisher site
See Article on Publisher Site

Abstract

A facile synthesis route for Ti-TUD-1 at room temperature employing silatrane and titanium glycolate as Si and Ti sources (2–8 mol%), respectively, over a triethanolamine template is proposed. XRD, N2 adsorption–desorption isotherms, and TEM analysis confirmed disordered mesoporous structures with high surface area (715–824 m2/g). According to the UV–visible spectroscopy of the calcined materials, titanium species of ca. 2.7 mol% Ti loading were present mostly in tetrahedral coordination for a sample prepared with 4 mol% Ti in the substrate mixture. Ti-TUD-1 showed catalytic activity in cyclohexene epoxidation, which depended on the amount of tetrahedrally coordinated Ti species. The hydrophilic nature of the surface of Ti-TUD-1 was confirmed by the effect of oxidant such that tert-butyl hydroperoxide (TBHP, 5–6 M in decane) was superior to other oxidants in water (cyclohexene conversion: TBHP in decane 36.5% vs. TBHP in water 30.6%). Ti-TUD-1 was more active in oxidative desulfurization (ODS) reaction than Ti-MCM-41 at the same Ti loading; the former produced 4,6-dimethyldibenzothiophene (4,6-DMDBT) conversion near 100% after reacting for 15 min, whereas Ti-MCM-41 produced final conversion of 4,6-DMDBT of 89% after reacting for 180 min. ODS over Ti-TUD-1 was influenced both by electron density and steric hindrance in model sulfur compounds. Partially polymerized Ti sites seemed to also contribute to the reaction.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Sep 10, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off