Facile synthesis of Fe2O3/Cu2O nanocomposite and its visible light photocatalytic activity for the degradation of cationic dyes

Facile synthesis of Fe2O3/Cu2O nanocomposite and its visible light photocatalytic activity for... Iron oxide-loaded Cu2O photocatalysts were prepared by a facile hydrothermal method. The binary mixed metal oxide photocatalyst was characterized by XRD, FE-SEM, FTIR, UV–Vis-DRS, particle size and zeta potential measurements. XRD analysis showed that Fe2O3/Cu2O catalysts were phase pure and highly crystalline in nature. FE-SEM images revealed the formation of nanospherical Fe2O3 over the Cu2O surface during hydrothermal reaction. From UV–Vis diffuse reflectance spectroscopy studies, the optical band gap of the Fe2O3/Cu2O photocatalyst was found to be slightly red-shifted to 1.85 eV, after loading of Fe2O3. The zeta potential analysis revealed that the surface of the Fe2O3/Cu2O photocatalyst was negatively charged in neutral solution. The loading of n-type Fe2O3 on p-type Cu2O augments the charge carrier separation at the interface, which was evident from the enhanced photodegradation of organic pollutants (Methylene blue and Rhodamine B dyes) under visible light irradiation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Facile synthesis of Fe2O3/Cu2O nanocomposite and its visible light photocatalytic activity for the degradation of cationic dyes

Loading next page...
 
/lp/springer_journal/facile-synthesis-of-fe2o3-cu2o-nanocomposite-and-its-visible-light-a914kD0OJ3
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-017-3050-0
Publisher site
See Article on Publisher Site

Abstract

Iron oxide-loaded Cu2O photocatalysts were prepared by a facile hydrothermal method. The binary mixed metal oxide photocatalyst was characterized by XRD, FE-SEM, FTIR, UV–Vis-DRS, particle size and zeta potential measurements. XRD analysis showed that Fe2O3/Cu2O catalysts were phase pure and highly crystalline in nature. FE-SEM images revealed the formation of nanospherical Fe2O3 over the Cu2O surface during hydrothermal reaction. From UV–Vis diffuse reflectance spectroscopy studies, the optical band gap of the Fe2O3/Cu2O photocatalyst was found to be slightly red-shifted to 1.85 eV, after loading of Fe2O3. The zeta potential analysis revealed that the surface of the Fe2O3/Cu2O photocatalyst was negatively charged in neutral solution. The loading of n-type Fe2O3 on p-type Cu2O augments the charge carrier separation at the interface, which was evident from the enhanced photodegradation of organic pollutants (Methylene blue and Rhodamine B dyes) under visible light irradiation.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jul 17, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off