Facile synthesis of BiFeO3 nanosheets with enhanced visible-light photocatalytic activity

Facile synthesis of BiFeO3 nanosheets with enhanced visible-light photocatalytic activity Single-crystalline BiFeO3 nanosheets with rectangular shape and exposed {101} facets were successfully synthesized via a facile hydrothermal method with low reaction temperature and short time (130 °C for 14 h). The process has advantages of energy saving, template and surfactant free, and no additional equipment in required. The average side lengths of BiFeO3 nanosheets are around 140 and 230 nm, and thickness is about 30 nm. As a result, the BiFeO3 nanosheets photocatalyst reaches as high as 89% of photodegradation efficiency of rhodamine B under 180 min visible light irradiation, which is about 4.68 and 2.41 times that of BiFeO3 powders prepared by solid-state reaction and sol–gel process respectively. The BiFeO3 nanosheets photocatalyst also exhibits a high reusability and storage stability for the photodegradation reaction. The internal electric fields produced due to the ferroelectric nature are perpendicular to the surfaces of BiFeO3 nanosheets, which can promote the separation efficiency of photoinduced charges along [101] direction. While the nanoscale thickness structure can shorten the separation distance of photoinduced charges along [101] direction. These two factors all greatly suppress the recombination rate of e−/h+ pairs, then leading to the improved photocatalytic kinetics of BiFeO3 nanosheets. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science: Materials in Electronics Springer Journals

Facile synthesis of BiFeO3 nanosheets with enhanced visible-light photocatalytic activity

Loading next page...
 
/lp/springer_journal/facile-synthesis-of-bifeo3-nanosheets-with-enhanced-visible-light-MvPVMxmXTV
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials
ISSN
0957-4522
eISSN
1573-482X
D.O.I.
10.1007/s10854-017-8437-6
Publisher site
See Article on Publisher Site

Abstract

Single-crystalline BiFeO3 nanosheets with rectangular shape and exposed {101} facets were successfully synthesized via a facile hydrothermal method with low reaction temperature and short time (130 °C for 14 h). The process has advantages of energy saving, template and surfactant free, and no additional equipment in required. The average side lengths of BiFeO3 nanosheets are around 140 and 230 nm, and thickness is about 30 nm. As a result, the BiFeO3 nanosheets photocatalyst reaches as high as 89% of photodegradation efficiency of rhodamine B under 180 min visible light irradiation, which is about 4.68 and 2.41 times that of BiFeO3 powders prepared by solid-state reaction and sol–gel process respectively. The BiFeO3 nanosheets photocatalyst also exhibits a high reusability and storage stability for the photodegradation reaction. The internal electric fields produced due to the ferroelectric nature are perpendicular to the surfaces of BiFeO3 nanosheets, which can promote the separation efficiency of photoinduced charges along [101] direction. While the nanoscale thickness structure can shorten the separation distance of photoinduced charges along [101] direction. These two factors all greatly suppress the recombination rate of e−/h+ pairs, then leading to the improved photocatalytic kinetics of BiFeO3 nanosheets.

Journal

Journal of Materials Science: Materials in ElectronicsSpringer Journals

Published: Dec 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off