Facile synthesis of BiFeO3 nanosheets with enhanced visible-light photocatalytic activity

Facile synthesis of BiFeO3 nanosheets with enhanced visible-light photocatalytic activity Single-crystalline BiFeO3 nanosheets with rectangular shape and exposed {101} facets were successfully synthesized via a facile hydrothermal method with low reaction temperature and short time (130 °C for 14 h). The process has advantages of energy saving, template and surfactant free, and no additional equipment in required. The average side lengths of BiFeO3 nanosheets are around 140 and 230 nm, and thickness is about 30 nm. As a result, the BiFeO3 nanosheets photocatalyst reaches as high as 89% of photodegradation efficiency of rhodamine B under 180 min visible light irradiation, which is about 4.68 and 2.41 times that of BiFeO3 powders prepared by solid-state reaction and sol–gel process respectively. The BiFeO3 nanosheets photocatalyst also exhibits a high reusability and storage stability for the photodegradation reaction. The internal electric fields produced due to the ferroelectric nature are perpendicular to the surfaces of BiFeO3 nanosheets, which can promote the separation efficiency of photoinduced charges along [101] direction. While the nanoscale thickness structure can shorten the separation distance of photoinduced charges along [101] direction. These two factors all greatly suppress the recombination rate of e−/h+ pairs, then leading to the improved photocatalytic kinetics of BiFeO3 nanosheets. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science: Materials in Electronics Springer Journals

Facile synthesis of BiFeO3 nanosheets with enhanced visible-light photocatalytic activity

Loading next page...
 
/lp/springer_journal/facile-synthesis-of-bifeo3-nanosheets-with-enhanced-visible-light-MvPVMxmXTV
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials
ISSN
0957-4522
eISSN
1573-482X
D.O.I.
10.1007/s10854-017-8437-6
Publisher site
See Article on Publisher Site

Abstract

Single-crystalline BiFeO3 nanosheets with rectangular shape and exposed {101} facets were successfully synthesized via a facile hydrothermal method with low reaction temperature and short time (130 °C for 14 h). The process has advantages of energy saving, template and surfactant free, and no additional equipment in required. The average side lengths of BiFeO3 nanosheets are around 140 and 230 nm, and thickness is about 30 nm. As a result, the BiFeO3 nanosheets photocatalyst reaches as high as 89% of photodegradation efficiency of rhodamine B under 180 min visible light irradiation, which is about 4.68 and 2.41 times that of BiFeO3 powders prepared by solid-state reaction and sol–gel process respectively. The BiFeO3 nanosheets photocatalyst also exhibits a high reusability and storage stability for the photodegradation reaction. The internal electric fields produced due to the ferroelectric nature are perpendicular to the surfaces of BiFeO3 nanosheets, which can promote the separation efficiency of photoinduced charges along [101] direction. While the nanoscale thickness structure can shorten the separation distance of photoinduced charges along [101] direction. These two factors all greatly suppress the recombination rate of e−/h+ pairs, then leading to the improved photocatalytic kinetics of BiFeO3 nanosheets.

Journal

Journal of Materials Science: Materials in ElectronicsSpringer Journals

Published: Dec 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off