Fabrication of Materials with Low Optical Reflectance Based on Laser-Microstructured Metal Surfaces

Fabrication of Materials with Low Optical Reflectance Based on Laser-Microstructured Metal Surfaces It has experimentally been shown that the specular reflectance of some metals can be reduced by one to two orders of magnitude by subjecting them to multipulse laser ablation in air. An increase in the coefficient of grayness has been implemented for copper, nickel, aluminum, and stainless steel. Multipulse ablation of the corresponding targets leads to the formation of a quasi-periodic microstructure with an amplitude relief ranging from 30 to 50 μm. The specular reflectance of duralumin has been reduced using anodic oxidation of the microstructures formed by laser ablation and filling the newly formed pores with carbon nanoparticles. The thus obtained surfaces are close to ideal black body in their optical characteristics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physics of Wave Phenomena Springer Journals

Fabrication of Materials with Low Optical Reflectance Based on Laser-Microstructured Metal Surfaces

Loading next page...
 
/lp/springer_journal/fabrication-of-materials-with-low-optical-reflectance-based-on-laser-aA7q7Ovxwz
Publisher
Springer Journals
Copyright
Copyright © 2018 by Allerton Press, Inc.
Subject
Physics; Quantum Optics; Acoustics
ISSN
1541-308X
eISSN
1934-807X
D.O.I.
10.3103/S1541308X18020048
Publisher site
See Article on Publisher Site

Abstract

It has experimentally been shown that the specular reflectance of some metals can be reduced by one to two orders of magnitude by subjecting them to multipulse laser ablation in air. An increase in the coefficient of grayness has been implemented for copper, nickel, aluminum, and stainless steel. Multipulse ablation of the corresponding targets leads to the formation of a quasi-periodic microstructure with an amplitude relief ranging from 30 to 50 μm. The specular reflectance of duralumin has been reduced using anodic oxidation of the microstructures formed by laser ablation and filling the newly formed pores with carbon nanoparticles. The thus obtained surfaces are close to ideal black body in their optical characteristics.

Journal

Physics of Wave PhenomenaSpringer Journals

Published: May 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off