Fabrication of lead-free piezoelectric (Bi0.5Na0.5)TiO3–BaTiO3 ceramics using electrophoretic deposition

Fabrication of lead-free piezoelectric (Bi0.5Na0.5)TiO3–BaTiO3 ceramics using electrophoretic... Electrophoretic deposition (EPD) process has certain advantages such as it can be applied for a mass production and also can be combined with magnetic crystal alignment technique. In this work, we prepared lead-free 85(Bi0.5Na0.5)TiO3–15BaTiO3 (85BNT–15BT) piezoelectric ceramics by conventional uniaxial pressing and EPD process. Various conditions were optimized such as suspension media, applied electrical field, and deposition time in order to yield dense green ceramics of 85BNT–15BT composition using EPD process. 85BNT–15BT ceramics prepared using EPD process revealed the Curie temperature of about 250 °C, coercive field of about 30 kV/cm, and piezoelectric constant (d 33) of 75 pC/N. The EPD-processed samples exhibited structural and electrical properties similar to that of the conventionally processed one suggesting the successful fabrication of 85BNT–15BT piezoelectric ceramics by EPD method without composition deviation. This study lays a foundation on the fabrication of Bi-based lead-free piezoelectric ceramics by an alternative route other than the conventionally practiced solid-state reaction method maintaining the similar chemical composition, moreover, leaving a large space to explore more in the future. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

Fabrication of lead-free piezoelectric (Bi0.5Na0.5)TiO3–BaTiO3 ceramics using electrophoretic deposition

Loading next page...
 
/lp/springer_journal/fabrication-of-lead-free-piezoelectric-bi0-5na0-5-tio3-batio3-ceramics-30X9hw68x8
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
D.O.I.
10.1007/s10853-017-1717-y
Publisher site
See Article on Publisher Site

Abstract

Electrophoretic deposition (EPD) process has certain advantages such as it can be applied for a mass production and also can be combined with magnetic crystal alignment technique. In this work, we prepared lead-free 85(Bi0.5Na0.5)TiO3–15BaTiO3 (85BNT–15BT) piezoelectric ceramics by conventional uniaxial pressing and EPD process. Various conditions were optimized such as suspension media, applied electrical field, and deposition time in order to yield dense green ceramics of 85BNT–15BT composition using EPD process. 85BNT–15BT ceramics prepared using EPD process revealed the Curie temperature of about 250 °C, coercive field of about 30 kV/cm, and piezoelectric constant (d 33) of 75 pC/N. The EPD-processed samples exhibited structural and electrical properties similar to that of the conventionally processed one suggesting the successful fabrication of 85BNT–15BT piezoelectric ceramics by EPD method without composition deviation. This study lays a foundation on the fabrication of Bi-based lead-free piezoelectric ceramics by an alternative route other than the conventionally practiced solid-state reaction method maintaining the similar chemical composition, moreover, leaving a large space to explore more in the future.

Journal

Journal of Materials ScienceSpringer Journals

Published: Nov 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off