Fabrication and characterization of high-strength water-soluble composite salt core for zinc alloy die castings

Fabrication and characterization of high-strength water-soluble composite salt core for zinc... A water-soluble salt core (WSSC) strengthened by reinforcing particles, including bauxite powder, glass fiber powder, and sericite powder, was fabricated by gravity-casting process. The surface quality, bending strength, water solubility, humidity resistance, and shrinkage rate of WSSC were investigated, and the synergistic effect between the different reinforcements on the bending strength was analyzed. Scanning electron microscope (SEM) was used to study the micromorphology of WSSC. The results indicate that the binary composite WSSC after being strengthened has excellent comprehensive performance, the bending strength increases by more than 1.4 times with the maximum value of 47.89 ± 0.83 MPa whose 24-h hygroscopic coefficient is lower than 0.18%, the water solubility rate is higher than 163.97 kg/(min m3) in still water at 80 °C, and the shrinkage rate is dramatically lower than that without any reinforced materials; in addition, there are no obvious casting defects on the core surface. The microscopic analysis demonstrates that the homogeneous distribution of the reinforcements in the matrix consumes more energy during the crack propagation procedure and the grain refinement of WSSC is also observed, above which is the main reason for the improvement of the bending strength. Furthermore, the practical casting test of the complex soluble salt core prepared by pressure core making was used for zinc alloy die casting. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Fabrication and characterization of high-strength water-soluble composite salt core for zinc alloy die castings

Loading next page...
 
/lp/springer_journal/fabrication-and-characterization-of-high-strength-water-soluble-7ye6GBMVuX
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London Ltd.
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-1208-y
Publisher site
See Article on Publisher Site

Abstract

A water-soluble salt core (WSSC) strengthened by reinforcing particles, including bauxite powder, glass fiber powder, and sericite powder, was fabricated by gravity-casting process. The surface quality, bending strength, water solubility, humidity resistance, and shrinkage rate of WSSC were investigated, and the synergistic effect between the different reinforcements on the bending strength was analyzed. Scanning electron microscope (SEM) was used to study the micromorphology of WSSC. The results indicate that the binary composite WSSC after being strengthened has excellent comprehensive performance, the bending strength increases by more than 1.4 times with the maximum value of 47.89 ± 0.83 MPa whose 24-h hygroscopic coefficient is lower than 0.18%, the water solubility rate is higher than 163.97 kg/(min m3) in still water at 80 °C, and the shrinkage rate is dramatically lower than that without any reinforced materials; in addition, there are no obvious casting defects on the core surface. The microscopic analysis demonstrates that the homogeneous distribution of the reinforcements in the matrix consumes more energy during the crack propagation procedure and the grain refinement of WSSC is also observed, above which is the main reason for the improvement of the bending strength. Furthermore, the practical casting test of the complex soluble salt core prepared by pressure core making was used for zinc alloy die casting.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Oct 26, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off