F-actin at Newly Invaginated Membrane in Neurons: Implications for Surface Area Regulation

F-actin at Newly Invaginated Membrane in Neurons: Implications for Surface Area Regulation Neuronal shape and volume changes require accompanying cell surface adjustments. In response to osmotic perturbations, neurons show evidence of surface area regulation; shrinking neurons invaginate membrane at the substratum, pinch off vacuoles, and lower their membrane capacitance. F-actin is implicated in reprocessing newly invaginated membrane because cytochalasin causes the transient shrinking-induced invaginations, vacuole-like dilations (VLDs), to persist indefinitely instead of undergoing recovery. To help determine if cortical F-actin indeed contributes to cell surface area regulation, we test, here, the following hypothesis: invaginating VLD membrane rapidly establishes an association with F-actin and this association contributes to VLD recovery. Cultured molluscan (Lymnaea) neurons, whose large size facilitates three-dimensional imaging, were used. In fixed neurons, fluorescent F-actin stains were imaged. In live neurons, VLD membrane was monitored by brightfield microscopies and actin was monitored via a fluorescent tag. VLD formation (unlike VLD recovery) is cytochalasin insensitive and consistent with this, VLDs formed readily in cytochalasin-treated neurons but showed no association with F-actin. Normally, however (i.e., no cytochalasin), VLDs were foci for rapid reorganization of F-actin. At earliest detection (1–2 min), nascent VLDs were entirely coated with F-actin and by 5 min, VLD mouths (i.e., at the substratum) had become annuli of F-actin-rich motile leading edge. Time lapse images from live neurons showed these rings to be motile filopodia and lamellipodia. The retrieval of VLD membrane (vacuolization) occurred via actin-associated constriction of VLD mouths. The interplay of surface membrane and cortical cytoskeleton in osmotically perturbed neurons suggests that cell surface area and volume adjustments are coordinated in part via mechanosensitive F-actin dynamics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

F-actin at Newly Invaginated Membrane in Neurons: Implications for Surface Area Regulation

Loading next page...
 
/lp/springer_journal/f-actin-at-newly-invaginated-membrane-in-neurons-implications-for-lZHi9g8wEd
Publisher
Springer Journals
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900567
Publisher site
See Article on Publisher Site

Abstract

Neuronal shape and volume changes require accompanying cell surface adjustments. In response to osmotic perturbations, neurons show evidence of surface area regulation; shrinking neurons invaginate membrane at the substratum, pinch off vacuoles, and lower their membrane capacitance. F-actin is implicated in reprocessing newly invaginated membrane because cytochalasin causes the transient shrinking-induced invaginations, vacuole-like dilations (VLDs), to persist indefinitely instead of undergoing recovery. To help determine if cortical F-actin indeed contributes to cell surface area regulation, we test, here, the following hypothesis: invaginating VLD membrane rapidly establishes an association with F-actin and this association contributes to VLD recovery. Cultured molluscan (Lymnaea) neurons, whose large size facilitates three-dimensional imaging, were used. In fixed neurons, fluorescent F-actin stains were imaged. In live neurons, VLD membrane was monitored by brightfield microscopies and actin was monitored via a fluorescent tag. VLD formation (unlike VLD recovery) is cytochalasin insensitive and consistent with this, VLDs formed readily in cytochalasin-treated neurons but showed no association with F-actin. Normally, however (i.e., no cytochalasin), VLDs were foci for rapid reorganization of F-actin. At earliest detection (1–2 min), nascent VLDs were entirely coated with F-actin and by 5 min, VLD mouths (i.e., at the substratum) had become annuli of F-actin-rich motile leading edge. Time lapse images from live neurons showed these rings to be motile filopodia and lamellipodia. The retrieval of VLD membrane (vacuolization) occurred via actin-associated constriction of VLD mouths. The interplay of surface membrane and cortical cytoskeleton in osmotically perturbed neurons suggests that cell surface area and volume adjustments are coordinated in part via mechanosensitive F-actin dynamics.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Sep 15, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off