EZ-AG: structure-free data aggregation in MANETs using push-assisted self-repelling random walks

EZ-AG: structure-free data aggregation in MANETs using push-assisted self-repelling random walks This paper describes EZ-AG, a structure-free protocol for duplicate insensitive data aggregation in MANETs. The key idea in EZ-AG is to introduce a token that performs a self-repelling random walk in the network and aggregates information from nodes when they are visited for the first time. A self-repelling random walk of a token on a graph is one in which at each step, the token moves to a neighbor that has been visited least often. While self-repelling random walks visit all nodes in the network much faster than plain random walks, they tend to slow down when most of the nodes are already visited. In this paper, we show that a single step push phase at each node can significantly speed up the aggregation and eliminate this slow down. By doing so, EZ-AG achieves aggregation in only O(N) time and messages. In terms of overhead, EZ-AG outperforms existing structure-free data aggregation by a factor of at least l o g(N) and achieves the lower bound for aggregation message overhead. We demonstrate the scalability and robustness of EZ-AG using ns-3 simulations in networks ranging from 100 to 4000 nodes under different mobility models and node speeds. We also describe a hierarchical extension for EZ-AG that can produce multi-resolution aggregates at each node using only O(N l o g N) messages, which is a poly-logarithmic factor improvement over existing techniques. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Internet Services and Applications Springer Journals

EZ-AG: structure-free data aggregation in MANETs using push-assisted self-repelling random walks

Loading next page...
 
/lp/springer_journal/ez-ag-structure-free-data-aggregation-in-manets-using-push-assisted-dgtAPgOXaS
Publisher
Springer London
Copyright
Copyright © 2018 by The Author(s)
Subject
Computer Science; Computer Systems Organization and Communication Networks; Computer Communication Networks; Information Systems and Communication Service; IT in Business; Computer Applications; Processor Architectures
ISSN
1867-4828
eISSN
1869-0238
D.O.I.
10.1186/s13174-018-0077-4
Publisher site
See Article on Publisher Site

Abstract

This paper describes EZ-AG, a structure-free protocol for duplicate insensitive data aggregation in MANETs. The key idea in EZ-AG is to introduce a token that performs a self-repelling random walk in the network and aggregates information from nodes when they are visited for the first time. A self-repelling random walk of a token on a graph is one in which at each step, the token moves to a neighbor that has been visited least often. While self-repelling random walks visit all nodes in the network much faster than plain random walks, they tend to slow down when most of the nodes are already visited. In this paper, we show that a single step push phase at each node can significantly speed up the aggregation and eliminate this slow down. By doing so, EZ-AG achieves aggregation in only O(N) time and messages. In terms of overhead, EZ-AG outperforms existing structure-free data aggregation by a factor of at least l o g(N) and achieves the lower bound for aggregation message overhead. We demonstrate the scalability and robustness of EZ-AG using ns-3 simulations in networks ranging from 100 to 4000 nodes under different mobility models and node speeds. We also describe a hierarchical extension for EZ-AG that can produce multi-resolution aggregates at each node using only O(N l o g N) messages, which is a poly-logarithmic factor improvement over existing techniques.

Journal

Journal of Internet Services and ApplicationsSpringer Journals

Published: Mar 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off