Eye-tracking and social behavior preference-based recommendation system

Eye-tracking and social behavior preference-based recommendation system J Supercomput https://doi.org/10.1007/s11227-018-2447-x Eye-tracking and social behavior preference-based recommendation system 1 1 Hyejin Song · Nammee Moon © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract With the popularization of wireless Internet technology and smartphones, the importance of recommendation systems, which analyze personality of a user using social network data such as search history, contents of written articles, the number of accesses, and etc., to achieve user convenience to obtain high profit is increasing. Since existing recommendation systems usually use only single kind of data such as social network service (SNS) data or purchase histories, the analyzed user personality by the recommendation systems can be inaccurate. Hence, in this paper, we propose an intuitive and highly accurate recommendation system by collecting personal data of a user from SNS and eye-tracking data of the user. By analyzing eye-tracking and social behaviors, we formulate preference metrics to derive category preferences. Using the preference metrics, we yield user preferences for categories. In addition, by combining and analyzing common categories between the eye-tracking and the social behaviors, we yield a final preference. Also, using the Pearson correlation coefficients, we yield the similarity between users based on the category preferences. Our experimental http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Supercomputing Springer Journals

Eye-tracking and social behavior preference-based recommendation system

Loading next page...
 
/lp/springer_journal/eye-tracking-and-social-behavior-preference-based-recommendation-nGWoLlaXzY
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Computer Science; Programming Languages, Compilers, Interpreters; Processor Architectures; Computer Science, general
ISSN
0920-8542
eISSN
1573-0484
D.O.I.
10.1007/s11227-018-2447-x
Publisher site
See Article on Publisher Site

Abstract

J Supercomput https://doi.org/10.1007/s11227-018-2447-x Eye-tracking and social behavior preference-based recommendation system 1 1 Hyejin Song · Nammee Moon © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract With the popularization of wireless Internet technology and smartphones, the importance of recommendation systems, which analyze personality of a user using social network data such as search history, contents of written articles, the number of accesses, and etc., to achieve user convenience to obtain high profit is increasing. Since existing recommendation systems usually use only single kind of data such as social network service (SNS) data or purchase histories, the analyzed user personality by the recommendation systems can be inaccurate. Hence, in this paper, we propose an intuitive and highly accurate recommendation system by collecting personal data of a user from SNS and eye-tracking data of the user. By analyzing eye-tracking and social behaviors, we formulate preference metrics to derive category preferences. Using the preference metrics, we yield user preferences for categories. In addition, by combining and analyzing common categories between the eye-tracking and the social behaviors, we yield a final preference. Also, using the Pearson correlation coefficients, we yield the similarity between users based on the category preferences. Our experimental

Journal

The Journal of SupercomputingSpringer Journals

Published: May 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off