Extraction of Vitamin E Isomers from Palm Oil: Methodology, Characterization, and in Vitro Anti-Tumor Activity

Extraction of Vitamin E Isomers from Palm Oil: Methodology, Characterization, and in Vitro... Vitamin E refers to a family of eight tocopherols (T) and tocotrienol (T3) isomers. Due to the unique pharmacological and anticancer activity of the individual isomers, there is a need to extract and separate the individual T3 isomers from T/T3 rich fractions of palm oil. The objective of the present study was to present a detailed protocol for the extraction of gram quantities of vitamin E isomers from a T3 rich fraction (Tocotrol™) that was obtained from palm oil, by column chromatography using a binary hexane:EtOAc (1–12%) phase system. The chemical integrity and identity of the extracted isomers was confirmed by TLC, HPLC, 1H-NMR, and Raman analysis. To evaluate their anticancer activity, vitamin E isomers were first entrapped into nanoemulsions and then tested against a panel of breast and pancreatic cancer cell lines. Nanoemulsions were prepared by the solvent evaporation technique. They had an average droplet size between 156–200 nm. In confirmation to what has been reported in the literature, γ-T3 and δ-T3 isomers were found to be significantly more active against tumor cells than the α-T and α-T3 isomers. The current study has demonstrated the feasibility of extracting the individual vitamin E isomers at high yields from natural sources while maintaining their chemical integrity and pharmacological activity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the American Oil Chemists' Society Springer Journals

Extraction of Vitamin E Isomers from Palm Oil: Methodology, Characterization, and in Vitro Anti-Tumor Activity

Loading next page...
 
/lp/springer_journal/extraction-of-vitamin-e-isomers-from-palm-oil-methodology-AKqEx0LhGf
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by AOCS
Subject
Chemistry; Industrial Chemistry/Chemical Engineering; Biomaterials; Agriculture; Food Science; Biotechnology
ISSN
0003-021X
eISSN
1558-9331
D.O.I.
10.1007/s11746-017-3025-8
Publisher site
See Article on Publisher Site

Abstract

Vitamin E refers to a family of eight tocopherols (T) and tocotrienol (T3) isomers. Due to the unique pharmacological and anticancer activity of the individual isomers, there is a need to extract and separate the individual T3 isomers from T/T3 rich fractions of palm oil. The objective of the present study was to present a detailed protocol for the extraction of gram quantities of vitamin E isomers from a T3 rich fraction (Tocotrol™) that was obtained from palm oil, by column chromatography using a binary hexane:EtOAc (1–12%) phase system. The chemical integrity and identity of the extracted isomers was confirmed by TLC, HPLC, 1H-NMR, and Raman analysis. To evaluate their anticancer activity, vitamin E isomers were first entrapped into nanoemulsions and then tested against a panel of breast and pancreatic cancer cell lines. Nanoemulsions were prepared by the solvent evaporation technique. They had an average droplet size between 156–200 nm. In confirmation to what has been reported in the literature, γ-T3 and δ-T3 isomers were found to be significantly more active against tumor cells than the α-T and α-T3 isomers. The current study has demonstrated the feasibility of extracting the individual vitamin E isomers at high yields from natural sources while maintaining their chemical integrity and pharmacological activity.

Journal

Journal of the American Oil Chemists' SocietySpringer Journals

Published: Aug 3, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off