Extracting micro air vehicles aerodynamic forces and coefficients in free flight using visual motion tracking techniques

Extracting micro air vehicles aerodynamic forces and coefficients in free flight using visual... This paper describes a methodology to extract aerial vehicles’ aerodynamic characteristics from visually tracked trajectory data. The technique is being developed to study the aerodynamics of centimeter-scale aircraft and develop flight simulation models. Centimeter-scale aircraft remains a largely unstudied domain of aerodynamics, for which traditional techniques like wind tunnels and computational fluid dynamics have not yet been fully adapted and validated. The methodology takes advantage of recent progress in commercial, vision-based, motion-tracking systems. This system dispenses from on-board navigation sensors and enables indoor flight testing under controlled atmospheric conditions. Given the configuration of retro-reflective markers affixed onto the aerial vehicle, the vehicle’s six degrees-of-freedom motion can be determined in real time. Under disturbance-free conditions, the aerodynamic forces and moments can be determined from the vehicle’s inertial acceleration, and furthermore, for a fixed-wing vehicle, the aerodynamic angles can be plotted from the vehicle’s kinematics. By combining this information, we can determine the temporal evolution of the aerodynamic coefficients, as they change throughout a trajectory. An attractive feature of this technique is that trajectories are not limited to equilibrium conditions but can include non-equilibrium, maneuvering flight. Whereas in traditional wind-tunnel experiments, the operating conditions are set by the experimenter, here, the aerodynamic conditions are driven by the vehicle’s own dynamics. As a result, this methodology could be useful for characterizing the unsteady aerodynamics effects and their coupling with the aircraft flight dynamics, providing insight into aerodynamic phenomena taking place at centimeter scale flight. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Extracting micro air vehicles aerodynamic forces and coefficients in free flight using visual motion tracking techniques

Loading next page...
 
/lp/springer_journal/extracting-micro-air-vehicles-aerodynamic-forces-and-coefficients-in-uLjuASVvuM
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-009-0803-6
Publisher site
See Article on Publisher Site

Abstract

This paper describes a methodology to extract aerial vehicles’ aerodynamic characteristics from visually tracked trajectory data. The technique is being developed to study the aerodynamics of centimeter-scale aircraft and develop flight simulation models. Centimeter-scale aircraft remains a largely unstudied domain of aerodynamics, for which traditional techniques like wind tunnels and computational fluid dynamics have not yet been fully adapted and validated. The methodology takes advantage of recent progress in commercial, vision-based, motion-tracking systems. This system dispenses from on-board navigation sensors and enables indoor flight testing under controlled atmospheric conditions. Given the configuration of retro-reflective markers affixed onto the aerial vehicle, the vehicle’s six degrees-of-freedom motion can be determined in real time. Under disturbance-free conditions, the aerodynamic forces and moments can be determined from the vehicle’s inertial acceleration, and furthermore, for a fixed-wing vehicle, the aerodynamic angles can be plotted from the vehicle’s kinematics. By combining this information, we can determine the temporal evolution of the aerodynamic coefficients, as they change throughout a trajectory. An attractive feature of this technique is that trajectories are not limited to equilibrium conditions but can include non-equilibrium, maneuvering flight. Whereas in traditional wind-tunnel experiments, the operating conditions are set by the experimenter, here, the aerodynamic conditions are driven by the vehicle’s own dynamics. As a result, this methodology could be useful for characterizing the unsteady aerodynamics effects and their coupling with the aircraft flight dynamics, providing insight into aerodynamic phenomena taking place at centimeter scale flight.

Journal

Experiments in FluidsSpringer Journals

Published: Feb 6, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off