Expression study of GLUT4 translocation-related genes in a porcine pre-diabetic model

Expression study of GLUT4 translocation-related genes in a porcine pre-diabetic model Obesity is a world-wide exponentially growing health problem that increases the risk of co-morbidities including metabolic syndrome, pre-diabetes, Type 2 Diabetes Mellitus (T2DM), and cancer. These co-morbidities are all complex conditions constituting a big challenge when searching for susceptibility genes. Identification of relevant genes, which could contribute to an earlier identification of individuals prone to develop diabetes, is urgently needed as many long-term complications can be avoided by preventive measures. Pre-diabetes is mainly associated with hyperglycemia; thus studying this phenotype might provide knowledge on relevant genes implicated in molecular mechanisms underlying pre-diabetes, and contributing to the development of T2DM. In the present study, two groups of pigs with high (HGG, N = 6) and low (NGG, N = 6) fasting plasma glucose level respectively were selected from a large pig population. Transcriptional levels of seven genes involved in the glucose transporter 4 (GLUT4) translocation pathway were studied by quantitative real-time PCR (qPCR) in diabetes relevant tissues (pancreas, adipose tissue, skeletal muscle, liver and kidney). Three of the genes, TBC (Tre-2, BUB2, CDC16) 1 Domain Family Member 4 (TBC1D4), insulin receptor and GLUT4 showed altered expression in some of the tissues. The expression pattern observed is in agreement with what has previously been reported in pre-diabetic humans confirming the pre-diabetic status of our pigs. Moreover, a novel isoform of TBC1D4 was detected by Western blotting using protein extracted from pancreas. The expression level of this novel isoform was further verified by qPCR in all tissues, showing the highest expression in the pancreas. Mammalian Genome Springer Journals

Expression study of GLUT4 translocation-related genes in a porcine pre-diabetic model

Loading next page...
Springer US
Copyright © 2015 by Springer Science+Business Media New York
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial