Expression studies of SCA in lily and confirmation of its role in pollen tube adhesion

Expression studies of SCA in lily and confirmation of its role in pollen tube adhesion During pollination the pollen tube grows into the style and toward the ovary via the transmitting tract. In lily the growth of pollen tubes involves tube cell adhesion to transmitting tract cells. We reported two molecules involved in this adhesion event. One is a pectic polysaccharide and the other, a 9 kDa basic protein named SCA for stigma/stylar cysteine-rich adhesin. SCA, which shows some identity with LTP (lipid transfer protein), was localized to the transmitting tract epidermis of the style where pollen tubes adhere. The present studies on the expression of SCA indicate that the protein has a similar expression pattern with LTP1 in Arabidopsis and that the protein is abundant in both the stigma and the style. For further proof of its role in pollen tube adhesion the activity of Escherichia coli-expressed protein has been studied in an in vitro adhesion assay system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Expression studies of SCA in lily and confirmation of its role in pollen tube adhesion

Loading next page...
 
/lp/springer_journal/expression-studies-of-sca-in-lily-and-confirmation-of-its-role-in-vunWPgwEPr
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1021139502947
Publisher site
See Article on Publisher Site

Abstract

During pollination the pollen tube grows into the style and toward the ovary via the transmitting tract. In lily the growth of pollen tubes involves tube cell adhesion to transmitting tract cells. We reported two molecules involved in this adhesion event. One is a pectic polysaccharide and the other, a 9 kDa basic protein named SCA for stigma/stylar cysteine-rich adhesin. SCA, which shows some identity with LTP (lipid transfer protein), was localized to the transmitting tract epidermis of the style where pollen tubes adhere. The present studies on the expression of SCA indicate that the protein has a similar expression pattern with LTP1 in Arabidopsis and that the protein is abundant in both the stigma and the style. For further proof of its role in pollen tube adhesion the activity of Escherichia coli-expressed protein has been studied in an in vitro adhesion assay system.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 17, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off