Expression profiles of genes involved in starch synthesis in non-waxy and waxy wheat

Expression profiles of genes involved in starch synthesis in non-waxy and waxy wheat Non-waxy and waxy types of wheat were used to study the expression profiles of genes involved in starch synthesis. During grain development, expression profiles and levels of AGPL and AGPS genes were similar to each other. SSI expression remained constant during the late grain development, while expression of SSII and SSIII was higher over the early to middle and middle grain development, and the GBSSI was actively expressed during the entire grain development. SBEIIa was higher expressed during early to middle stage, SBEIIb was active in middle and SBEI during middle to late grain development. During the entire grain development, expression levels of GBSSI and SSIII genes were higher in non-waxy type of wheat, while those of SBEI and SBEIIb were lower in the non-waxy type of wheat. Expression of all genes involved in starch synthesis was stage-specific and tissue-specific. In addition, the expression profiles of genes encoding starch synthase were in agreement with the activity changes of starch synthase during grain development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Expression profiles of genes involved in starch synthesis in non-waxy and waxy wheat

Loading next page...
 
/lp/springer_journal/expression-profiles-of-genes-involved-in-starch-synthesis-in-non-waxy-URXPdbq6tr
Publisher
Springer Journals
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443712050056
Publisher site
See Article on Publisher Site

Abstract

Non-waxy and waxy types of wheat were used to study the expression profiles of genes involved in starch synthesis. During grain development, expression profiles and levels of AGPL and AGPS genes were similar to each other. SSI expression remained constant during the late grain development, while expression of SSII and SSIII was higher over the early to middle and middle grain development, and the GBSSI was actively expressed during the entire grain development. SBEIIa was higher expressed during early to middle stage, SBEIIb was active in middle and SBEI during middle to late grain development. During the entire grain development, expression levels of GBSSI and SSIII genes were higher in non-waxy type of wheat, while those of SBEI and SBEIIb were lower in the non-waxy type of wheat. Expression of all genes involved in starch synthesis was stage-specific and tissue-specific. In addition, the expression profiles of genes encoding starch synthase were in agreement with the activity changes of starch synthase during grain development.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Aug 16, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off