Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Expression patterns of two tobacco isoflavone reductase-like genes and their possible roles in secondary metabolism in tobacco

Expression patterns of two tobacco isoflavone reductase-like genes and their possible roles in... Plants contain a large number of proteins homologous to isoflavone reductase, an NADPH-dependent reductase involved in the biosynthesis of isoflavonoid phytoalexins in legumes. Although some are bona fide isoflavone reductases, others may catalyze distinct reductase reactions. Two tobacco genes, TP7 and A622, encoding isoflavone reductase-like proteins, had been previously identified from their unique expression patterns, but their functions were not known. We show here that TP7 is a tobacco phenylcoumaran benzylic ether reductase involved in lignan biosynthesis, but that A622 is not. To gain insight into the possible function of A622, we analyzed in detail the expression patterns of the A622 gene by RNA and protein blots, immunohistochemistry, and its promoter expression in transgenic Nicotiana sylvestris roots. The A622 expression patterns were qualitatively similar to those of putrescine N-methyltransferase, the first enzyme in nicotine biosynthesis, suggesting that A622 may function in the metabolism of nicotine or related alkaloids. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Expression patterns of two tobacco isoflavone reductase-like genes and their possible roles in secondary metabolism in tobacco

Loading next page...
 
/lp/springer_journal/expression-patterns-of-two-tobacco-isoflavone-reductase-like-genes-and-eCX3jJz1Dc

References (43)

Publisher
Springer Journals
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
DOI
10.1023/A:1019867732278
Publisher site
See Article on Publisher Site

Abstract

Plants contain a large number of proteins homologous to isoflavone reductase, an NADPH-dependent reductase involved in the biosynthesis of isoflavonoid phytoalexins in legumes. Although some are bona fide isoflavone reductases, others may catalyze distinct reductase reactions. Two tobacco genes, TP7 and A622, encoding isoflavone reductase-like proteins, had been previously identified from their unique expression patterns, but their functions were not known. We show here that TP7 is a tobacco phenylcoumaran benzylic ether reductase involved in lignan biosynthesis, but that A622 is not. To gain insight into the possible function of A622, we analyzed in detail the expression patterns of the A622 gene by RNA and protein blots, immunohistochemistry, and its promoter expression in transgenic Nicotiana sylvestris roots. The A622 expression patterns were qualitatively similar to those of putrescine N-methyltransferase, the first enzyme in nicotine biosynthesis, suggesting that A622 may function in the metabolism of nicotine or related alkaloids.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 13, 2004

There are no references for this article.