Expression Patterns of Purple Acid Phosphatase Genes in Arabidopsis Organs and Functional Analysis of AtPAP23 Predominantly Transcribed in Flower

Expression Patterns of Purple Acid Phosphatase Genes in Arabidopsis Organs and Functional... Purple acid phosphatases (PAPs) are metallo-phosphoesterases. Their expression and function have not been systematically investigated in higher plants. In this work, we compared the transcript levels of 28 Arabidopsis PAP (AtPAP) genes in five Arabidopsis organs. The 28 members, although differed in their expression patterns in vegetative organs, were all transcribed in flower. Furthermore, the transcription of seven members (AtPAPs 6, 11, 14, 19, 23, 24 and 25) occurred predominantly in the flower. To begin dissecting the role of AtPAP genes in flower development, further expression and functional analyses were conducted using AtPAP23. Histochemical staining of transgenic plants expressing AtPAP23 promoter-beta-glucuronidase (GUS) gene construct revealed that AtPAP23 transcription was strong in flower apical meristems, but became restricted to petals and anther filaments in fully developed flower. A GST (glutathione S-transferase) fusion protein of AtPAP23 (GST:AtPAP23) was expressed in bacterial cells, and was found to contain significant amounts of Fe and Mn (whereas the control GST protein contained none). In biochemical tests, GST:AtPAP23 showed typical acid phosphatase activities. The fusion protein was also highly active on phosphoserine, but not phosphotyrosine. Despite its highly specific expression pattern and the demonstrated biochemical function of its protein product, the RNAi (RNA interference), T-DNA knock-out and overexpression lines of AtPAP23 were indistinguishable from wild type plants in the development of flower (or other organs). Interestingly, the Fe and Mn contents were found significantly increased in AtPAP23 overexpression lines, which may offer a new direction for further functional studies of AtPAPs in Arabidopsis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Expression Patterns of Purple Acid Phosphatase Genes in Arabidopsis Organs and Functional Analysis of AtPAP23 Predominantly Transcribed in Flower

Loading next page...
 
/lp/springer_journal/expression-patterns-of-purple-acid-phosphatase-genes-in-arabidopsis-0CBsFpzIfh
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2005 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-005-0183-0
Publisher site
See Article on Publisher Site

Abstract

Purple acid phosphatases (PAPs) are metallo-phosphoesterases. Their expression and function have not been systematically investigated in higher plants. In this work, we compared the transcript levels of 28 Arabidopsis PAP (AtPAP) genes in five Arabidopsis organs. The 28 members, although differed in their expression patterns in vegetative organs, were all transcribed in flower. Furthermore, the transcription of seven members (AtPAPs 6, 11, 14, 19, 23, 24 and 25) occurred predominantly in the flower. To begin dissecting the role of AtPAP genes in flower development, further expression and functional analyses were conducted using AtPAP23. Histochemical staining of transgenic plants expressing AtPAP23 promoter-beta-glucuronidase (GUS) gene construct revealed that AtPAP23 transcription was strong in flower apical meristems, but became restricted to petals and anther filaments in fully developed flower. A GST (glutathione S-transferase) fusion protein of AtPAP23 (GST:AtPAP23) was expressed in bacterial cells, and was found to contain significant amounts of Fe and Mn (whereas the control GST protein contained none). In biochemical tests, GST:AtPAP23 showed typical acid phosphatase activities. The fusion protein was also highly active on phosphoserine, but not phosphotyrosine. Despite its highly specific expression pattern and the demonstrated biochemical function of its protein product, the RNAi (RNA interference), T-DNA knock-out and overexpression lines of AtPAP23 were indistinguishable from wild type plants in the development of flower (or other organs). Interestingly, the Fe and Mn contents were found significantly increased in AtPAP23 overexpression lines, which may offer a new direction for further functional studies of AtPAPs in Arabidopsis.

Journal

Plant Molecular BiologySpringer Journals

Published: Jun 24, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off