Expression patterns and subcellular localization of a 52kDa sucrose-binding protein homologue of Vicia faba (VfSBPL) suggest different functions during development

Expression patterns and subcellular localization of a 52kDa sucrose-binding protein homologue of... A cDNA coding for a 54 kDa signal sequence containing protein has been isolated from a faba bean cotyledonary library and characterized. The deduced protein is designated Vicia faba SBP-like protein (VfSBPL) since it shares 58% homology to a 62 kDa soybean (Glycine max) protein (GmSBP) which has been described as a sucrose-binding and sucrose-transporting protein (SBP). VfSBPL as well as GmSBP are outgroup members of the large vicilin storage protein family. We were unable to measure any sucrose transport activity in mutant yeast cells expressing VfSBPL. During seed maturation in late (stage VII) cotyledons mRNA was localized by in situ hybridization in the storage parenchyma cells. At the subcellular level, immunolocalization studies proved VfSBPL accumulation in storage protein vacuoles. However, mRNA localization in stage VI cotyledons during the pre-storage/storage transition phase was untypical for a storage protein in that, in addition to storage parenchyma cell labelling, strong labelling was found over seed coat vascular strands and the embryo epidermal transfer cell layer reminiscent of sucrose transporter localization. The VfSBPL gene is composed of 6 exons and 5 introns with introns located at the same sites as in a Vicia faba 50 kDa vicilin storage protein gene. The time pattern of expression as revealed by northern blotting and the GUS accumulation pattern caused by a VfSBPL-promoter/GUS construct in transgenic tobacco seeds was similar to a seed protein gene with increasing expression during seed maturation. Our data suggest different functions of VfSBPL during seed development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Expression patterns and subcellular localization of a 52kDa sucrose-binding protein homologue of Vicia faba (VfSBPL) suggest different functions during development

Loading next page...
 
/lp/springer_journal/expression-patterns-and-subcellular-localization-of-a-52kda-sucrose-FhN79Sv1T0
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2001 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1011886908619
Publisher site
See Article on Publisher Site

Abstract

A cDNA coding for a 54 kDa signal sequence containing protein has been isolated from a faba bean cotyledonary library and characterized. The deduced protein is designated Vicia faba SBP-like protein (VfSBPL) since it shares 58% homology to a 62 kDa soybean (Glycine max) protein (GmSBP) which has been described as a sucrose-binding and sucrose-transporting protein (SBP). VfSBPL as well as GmSBP are outgroup members of the large vicilin storage protein family. We were unable to measure any sucrose transport activity in mutant yeast cells expressing VfSBPL. During seed maturation in late (stage VII) cotyledons mRNA was localized by in situ hybridization in the storage parenchyma cells. At the subcellular level, immunolocalization studies proved VfSBPL accumulation in storage protein vacuoles. However, mRNA localization in stage VI cotyledons during the pre-storage/storage transition phase was untypical for a storage protein in that, in addition to storage parenchyma cell labelling, strong labelling was found over seed coat vascular strands and the embryo epidermal transfer cell layer reminiscent of sucrose transporter localization. The VfSBPL gene is composed of 6 exons and 5 introns with introns located at the same sites as in a Vicia faba 50 kDa vicilin storage protein gene. The time pattern of expression as revealed by northern blotting and the GUS accumulation pattern caused by a VfSBPL-promoter/GUS construct in transgenic tobacco seeds was similar to a seed protein gene with increasing expression during seed maturation. Our data suggest different functions of VfSBPL during seed development.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 3, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off