Expression of the tobacco anionic peroxidase gene is tissue-specific and developmentally regulated

Expression of the tobacco anionic peroxidase gene is tissue-specific and developmentally regulated Transcriptionally regulated expression of tobacco anionic peroxidase was investigated with regard to tissue specificity and developmental regulation. Two tobacco species, Nicotiana sylvestris and Nicotiana tabacum cv. Xanthi, were stably transformed with a gene chimera composed of 3 kb of the tobacco anionic peroxidase promoter, the Escherichia coli β-glucuronidase (GUS) coding region and the nopaline synthase terminator. Gene expression was regulated spatially and developmentally in all organs, and generally increased with age and maturity of the plant, tissue or organ. In the aerial portions of the plant, GUS activity was strongly expressed in trichomes and epidermis at nearly all developmental stages. In later stages of development, activity was also detected in ground tissue and parenchyma cells associated with vascular tissues. Activity in roots was limited to cortical cells and vascular-associated parenchyma cells. In reproductive tissue, expression was observed in sepals and petals before anthesis, and in all floral organs after anthesis. Expression was never detected in vascular tissue and was poorly correlated with lignification except in the cells surrounding primary xylem and pericyclic fibers in N. sylvestris. These studies suggest that this peroxidase isoenzyme is only limitedly involved in lignification but may be important in plant defense, growth and development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Expression of the tobacco anionic peroxidase gene is tissue-specific and developmentally regulated

Loading next page...
 
/lp/springer_journal/expression-of-the-tobacco-anionic-peroxidase-gene-is-tissue-specific-hJIg18KQ1C
Publisher
Springer Journals
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005939600344
Publisher site
See Article on Publisher Site

Abstract

Transcriptionally regulated expression of tobacco anionic peroxidase was investigated with regard to tissue specificity and developmental regulation. Two tobacco species, Nicotiana sylvestris and Nicotiana tabacum cv. Xanthi, were stably transformed with a gene chimera composed of 3 kb of the tobacco anionic peroxidase promoter, the Escherichia coli β-glucuronidase (GUS) coding region and the nopaline synthase terminator. Gene expression was regulated spatially and developmentally in all organs, and generally increased with age and maturity of the plant, tissue or organ. In the aerial portions of the plant, GUS activity was strongly expressed in trichomes and epidermis at nearly all developmental stages. In later stages of development, activity was also detected in ground tissue and parenchyma cells associated with vascular tissues. Activity in roots was limited to cortical cells and vascular-associated parenchyma cells. In reproductive tissue, expression was observed in sepals and petals before anthesis, and in all floral organs after anthesis. Expression was never detected in vascular tissue and was poorly correlated with lignification except in the cells surrounding primary xylem and pericyclic fibers in N. sylvestris. These studies suggest that this peroxidase isoenzyme is only limitedly involved in lignification but may be important in plant defense, growth and development.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off