Expression of the Brazil nut methionine-rich protein and mutants with increased methionine in transgenic potato

Expression of the Brazil nut methionine-rich protein and mutants with increased methionine in... A cDNA encoding the methionine-rich (19 mol% Met) protein in Brazil nut was placed under the regulation of CaMV 35S promoter and nopaline synthase terminator and introduced into the potato cultivar Russet Burbank via Agrobacterium-mediated transformation. To further enhance the Met content in the transgenic plants, chimeric genes containing four mutant constructs, BoxIa (with 5 additional Met), BoxIIa (2 additional Met), BoxIaIIa (7 additional Met), and BoxIIa2 (7 additional Met), were also generated by sequence modifications of the cDNA and transferred into potato. Analysis of the microtubers and leaves of the transgenic potato plants revealed, in general, with the exception of the BoxIIa2, the presence of mRNA transcripts of the expected size and the correctly processed Met-rich 9 kDa subunit polypeptides. The expression levels in the leaves among the various constructs and individual transgenic plants varied between <0.01% and 0.2% of total protein. The corresponding expression in the tubers was usually 2- to 4-fold lower than in leaves. In the case of BoxIIa2, which contains two tandem repeats of the BoxIIa mutant sequence, a larger (10.5–11 kDa) polypeptide was detected. These findings demonstrated that it is feasible to exploit the variable region of the Brazil Nut 2S protein for enhanced Met contents and perhaps for other desirable properties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Expression of the Brazil nut methionine-rich protein and mutants with increased methionine in transgenic potato

Loading next page...
 
/lp/springer_journal/expression-of-the-brazil-nut-methionine-rich-protein-and-mutants-with-h69qJWZH0l
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006098524887
Publisher site
See Article on Publisher Site

Abstract

A cDNA encoding the methionine-rich (19 mol% Met) protein in Brazil nut was placed under the regulation of CaMV 35S promoter and nopaline synthase terminator and introduced into the potato cultivar Russet Burbank via Agrobacterium-mediated transformation. To further enhance the Met content in the transgenic plants, chimeric genes containing four mutant constructs, BoxIa (with 5 additional Met), BoxIIa (2 additional Met), BoxIaIIa (7 additional Met), and BoxIIa2 (7 additional Met), were also generated by sequence modifications of the cDNA and transferred into potato. Analysis of the microtubers and leaves of the transgenic potato plants revealed, in general, with the exception of the BoxIIa2, the presence of mRNA transcripts of the expected size and the correctly processed Met-rich 9 kDa subunit polypeptides. The expression levels in the leaves among the various constructs and individual transgenic plants varied between <0.01% and 0.2% of total protein. The corresponding expression in the tubers was usually 2- to 4-fold lower than in leaves. In the case of BoxIIa2, which contains two tandem repeats of the BoxIIa mutant sequence, a larger (10.5–11 kDa) polypeptide was detected. These findings demonstrated that it is feasible to exploit the variable region of the Brazil Nut 2S protein for enhanced Met contents and perhaps for other desirable properties.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off