Expression of the ACC synthase and ACC oxidase coding genes after self-pollination and incongruous pollination of tobacco pistils

Expression of the ACC synthase and ACC oxidase coding genes after self-pollination and... In tobacco, as in other species, ethylene is produced in response to pollination. Although tobacco is a self-compatible species, it displays unilateral incongruity with other Nicotianaplants. Incongruous pollination also results in ethylene production, but this production differs depending on the pollen used and is related to the extent to which pollen tubes grow in the tobacco style. In the investigation reported here we followed the expression of the ACC synthase- and ACC oxidase-coding genes upon pollination of tobacco pistils and compared self-pollination with incongruous pollination. The pattern of expression of these genes also correlated with pollen-tube growth, although wounding alone cannot explain the results obtained. We also examined the expression of these genes upon pollination of immature tobacco pistils, in which different pollen tubes grew indistinctly inside the tobacco style and reached the ovary at the same rate. In this situation no significant differences in gene expression could be observed between the different pollinations. Ethephon, a substance that produces ethylene, could, in some cases, minimize the arrest of incongruous pollen tubes inside the style. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Expression of the ACC synthase and ACC oxidase coding genes after self-pollination and incongruous pollination of tobacco pistils

Loading next page...
 
/lp/springer_journal/expression-of-the-acc-synthase-and-acc-oxidase-coding-genes-after-self-muG6pTwCom
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1014087914652
Publisher site
See Article on Publisher Site

Abstract

In tobacco, as in other species, ethylene is produced in response to pollination. Although tobacco is a self-compatible species, it displays unilateral incongruity with other Nicotianaplants. Incongruous pollination also results in ethylene production, but this production differs depending on the pollen used and is related to the extent to which pollen tubes grow in the tobacco style. In the investigation reported here we followed the expression of the ACC synthase- and ACC oxidase-coding genes upon pollination of tobacco pistils and compared self-pollination with incongruous pollination. The pattern of expression of these genes also correlated with pollen-tube growth, although wounding alone cannot explain the results obtained. We also examined the expression of these genes upon pollination of immature tobacco pistils, in which different pollen tubes grew indistinctly inside the tobacco style and reached the ovary at the same rate. In this situation no significant differences in gene expression could be observed between the different pollinations. Ethephon, a substance that produces ethylene, could, in some cases, minimize the arrest of incongruous pollen tubes inside the style.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off