Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Expression of MADS-box genes during the embryonic phase in Arabidopsis

Expression of MADS-box genes during the embryonic phase in Arabidopsis MADS domain factors play important roles as developmental regulators in plants. In Arabidopsis thaliana, MADS domain proteins have been shown to regulate various processes during the vegetative and reproductive phases. Relatively little is known, however, about family members expressed during the embryonic phase and their function. To determine which MADS-box genes are expressed during the embryonic phase in Arabidopsis, a family-wide survey involving gene-specific primers and RT-PCR was conducted. Transcripts corresponding to 64 (out of 109 total) family members could be detected in RNA samples isolated from embryonic culture tissue. Eight MADS-box genes that appear to be expressed at higher levels during the embryonic phase than in seedlings or in inflorescence apices were identified. The spatial pattern of expression in developing seeds was characterized for four MADS-box genes (FLOWERING LOCUS C, FLOWERING LOCUS M, AGAMOUS-LIKE 15, and AGAMOUS-LIKE 18) using reporter constructs encoding translational fusions to GUS. All four are expressed in cells throughout the endosperm and embryo. Finally, to test the hypothesis that AGAMOUS-LIKE15 (AGL15) and AGAMOUS-LIKE18 (AGL18) play essential roles during the embryonic phase, plants carrying T-DNA insertions that disrupt these genes were isolated. No embryo defects were observed in agl15 or agl18 single mutants or in agl15agl18 double mutants. These results indicate that multiple regulatory pathways that involve MADS domain factors are likely to operate in embryonic tissues, and that genetic and/or functional redundancy are likely to be as prevalent as in other phases of the life cycle. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Expression of MADS-box genes during the embryonic phase in Arabidopsis

Loading next page...
 
/lp/springer_journal/expression-of-mads-box-genes-during-the-embryonic-phase-in-arabidopsis-mAgUHv6TwX

References (64)

Publisher
Springer Journals
Copyright
Copyright © 2005 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
DOI
10.1007/s11103-005-4546-3
pmid
16028119
Publisher site
See Article on Publisher Site

Abstract

MADS domain factors play important roles as developmental regulators in plants. In Arabidopsis thaliana, MADS domain proteins have been shown to regulate various processes during the vegetative and reproductive phases. Relatively little is known, however, about family members expressed during the embryonic phase and their function. To determine which MADS-box genes are expressed during the embryonic phase in Arabidopsis, a family-wide survey involving gene-specific primers and RT-PCR was conducted. Transcripts corresponding to 64 (out of 109 total) family members could be detected in RNA samples isolated from embryonic culture tissue. Eight MADS-box genes that appear to be expressed at higher levels during the embryonic phase than in seedlings or in inflorescence apices were identified. The spatial pattern of expression in developing seeds was characterized for four MADS-box genes (FLOWERING LOCUS C, FLOWERING LOCUS M, AGAMOUS-LIKE 15, and AGAMOUS-LIKE 18) using reporter constructs encoding translational fusions to GUS. All four are expressed in cells throughout the endosperm and embryo. Finally, to test the hypothesis that AGAMOUS-LIKE15 (AGL15) and AGAMOUS-LIKE18 (AGL18) play essential roles during the embryonic phase, plants carrying T-DNA insertions that disrupt these genes were isolated. No embryo defects were observed in agl15 or agl18 single mutants or in agl15agl18 double mutants. These results indicate that multiple regulatory pathways that involve MADS domain factors are likely to operate in embryonic tissues, and that genetic and/or functional redundancy are likely to be as prevalent as in other phases of the life cycle.

Journal

Plant Molecular BiologySpringer Journals

Published: Mar 25, 2005

There are no references for this article.