Expression of Human papillomavirus type 16 major capsid protein in transgenic Nicotiana tabacum cv. Xanthi

Expression of Human papillomavirus type 16 major capsid protein in transgenic Nicotiana tabacum... The production of vaccine antigens in plants is a safe and potentially very cost-effective alternative to traditional expression systems. We investigated the possibility of transgenic plant expression of the Human papillomavirus (HPV) type 16 L1 major capsid protein, with and without nuclear localisation signals, in Nicotiana tabacum cv. Xanthi plants. The genes were stably integrated into the N. tabacum genome, and both the expressed proteins were capable of assembling into capsomers and virus-like particles. The proteins in concentrated leaf extracts (L1 Tr ) were tested for antigenicity using a panel of characterised monoclonal antibodies (Mabs). Neutralising and conformation-specific Mabs (H16:V5 and H16:E70) were shown to bind to both types of the plant-produced particles. We estimated the L1 Tr product yield to be 2–4 µg per kg of fresh leaf material. Rabbits immunised with small doses of plant-produced particles elicited a weak anti-HPV-16 L1 immune response. Our results support the feasibility of using transgenic plants for the production of HPV vaccines. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Expression of Human papillomavirus type 16 major capsid protein in transgenic Nicotiana tabacum cv. Xanthi

Loading next page...
 
/lp/springer_journal/expression-of-human-papillomavirus-type-16-major-capsid-protein-in-ULhJj2IlEx
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag/Wien
Subject
LifeSciences
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-003-0119-4
Publisher site
See Article on Publisher Site

Abstract

The production of vaccine antigens in plants is a safe and potentially very cost-effective alternative to traditional expression systems. We investigated the possibility of transgenic plant expression of the Human papillomavirus (HPV) type 16 L1 major capsid protein, with and without nuclear localisation signals, in Nicotiana tabacum cv. Xanthi plants. The genes were stably integrated into the N. tabacum genome, and both the expressed proteins were capable of assembling into capsomers and virus-like particles. The proteins in concentrated leaf extracts (L1 Tr ) were tested for antigenicity using a panel of characterised monoclonal antibodies (Mabs). Neutralising and conformation-specific Mabs (H16:V5 and H16:E70) were shown to bind to both types of the plant-produced particles. We estimated the L1 Tr product yield to be 2–4 µg per kg of fresh leaf material. Rabbits immunised with small doses of plant-produced particles elicited a weak anti-HPV-16 L1 immune response. Our results support the feasibility of using transgenic plants for the production of HPV vaccines.

Journal

Archives of VirologySpringer Journals

Published: Dec 18, 2002

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off