Expression of Cyclic Nucleotide-Gated Cation Channels in Airway Epithelial Cells

Expression of Cyclic Nucleotide-Gated Cation Channels in Airway Epithelial Cells Using the whole-cell patch-clamp technique, the selectivity and pharmacology of 8-Br-cGMP-stimulated currents in the human alveolar cell line A549 was compared to 8-Br-cGMP-stimulated currents in HK293 cells transfected with hαCNC1. Whole cell currents stimulated by 8-Br-cGMP in HK293 cells transfected with hαCNC1 or A549 cells are carried by inward sodium and outward potassium with nearly the same selectivity. The whole-cell inward currents that are stimulated by 8-Br-cGMP in HK293 cells transfected with hαCNC1 are inhibited by l-cis-diltiazem with an IC50 of 154 μm, by 2′,4′-dichlorobenzamil with an IC50 of 50 μm and by amiloride with an IC50 of 133 μm. The whole-cell inward currents in A549 cells that are stimulated by 8-Br-cGMP, are inhibited by l-cis-diltiazem with an IC50 of 87 μm, by 2′4′-dichlorobenzamil with an IC50 of 38 μm and by amiloride with an IC50 of 32 μm suggesting that these airway cells contain cyclic nucleotide-gated cation channels. RT-PCR data suggest that mRNA of both αCNC1 and βCNC subunits are present in A549 cells and the presence of the βCNC subunit, may as previously reported, increase the affinity of these channel blockers compared to the hαCNC1 subunit alone. The mRNA of two other isoforms of this channel, CNC2 and CNC3, are also expressed in the A549 cell line. This study documents the IC50 of externally applied channel blockers that can be used for in vitro or in vivo experiments to document sodium absorption via cyclic nucleotide-gated cation channels in airway cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Expression of Cyclic Nucleotide-Gated Cation Channels in Airway Epithelial Cells

Loading next page...
 
/lp/springer_journal/expression-of-cyclic-nucleotide-gated-cation-channels-in-airway-DiZl1tYTYt
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900564
Publisher site
See Article on Publisher Site

Abstract

Using the whole-cell patch-clamp technique, the selectivity and pharmacology of 8-Br-cGMP-stimulated currents in the human alveolar cell line A549 was compared to 8-Br-cGMP-stimulated currents in HK293 cells transfected with hαCNC1. Whole cell currents stimulated by 8-Br-cGMP in HK293 cells transfected with hαCNC1 or A549 cells are carried by inward sodium and outward potassium with nearly the same selectivity. The whole-cell inward currents that are stimulated by 8-Br-cGMP in HK293 cells transfected with hαCNC1 are inhibited by l-cis-diltiazem with an IC50 of 154 μm, by 2′,4′-dichlorobenzamil with an IC50 of 50 μm and by amiloride with an IC50 of 133 μm. The whole-cell inward currents in A549 cells that are stimulated by 8-Br-cGMP, are inhibited by l-cis-diltiazem with an IC50 of 87 μm, by 2′4′-dichlorobenzamil with an IC50 of 38 μm and by amiloride with an IC50 of 32 μm suggesting that these airway cells contain cyclic nucleotide-gated cation channels. RT-PCR data suggest that mRNA of both αCNC1 and βCNC subunits are present in A549 cells and the presence of the βCNC subunit, may as previously reported, increase the affinity of these channel blockers compared to the hαCNC1 subunit alone. The mRNA of two other isoforms of this channel, CNC2 and CNC3, are also expressed in the A549 cell line. This study documents the IC50 of externally applied channel blockers that can be used for in vitro or in vivo experiments to document sodium absorption via cyclic nucleotide-gated cation channels in airway cells.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Sep 15, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off