Expression of cecropin P1 gene increases resistance of Camelina sativa (L.) plants to microbial phytopathogenes

Expression of cecropin P1 gene increases resistance of Camelina sativa (L.) plants to microbial... Transgenic plants of camelina (Camelina sativa (L.) Crantz) with the synthetic gene of antimicrobial peptide cecropin P1 (cecP1) were obtained. Agrobacterium-mediated transformation is performed using the binary vector pGA482::cecP1 by vacuum infiltration of flower buds. The presence of the cecP1 gene in the genome of plants was confirmed by PCR. CecP1 gene expression in transgenic plants was shown by Western blot analysis and by antimicrobial activity of plant extracts against the bacterial phytopathogene Erwinia carotovora. The plants of F0 and F1 generations had the normal phenotype and retained the ability to form viable seeds in self-pollination. cecP1 plants exhibit enhanced resistance to bacterial and fungal phytopathogens: Erwinia carotovora and Fusarium sporotrichioides. The increased sustainability of cecropin P1-expressing plants against salt stress is shown. The possibility of the integration of the cecP1 gene into the overall protective system of plants against biotic and abiotic stresses is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Expression of cecropin P1 gene increases resistance of Camelina sativa (L.) plants to microbial phytopathogenes

Loading next page...
 
/lp/springer_journal/expression-of-cecropin-p1-gene-increases-resistance-of-camelina-sativa-qEExeAAx0r
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2013 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S102279541305013X
Publisher site
See Article on Publisher Site

Abstract

Transgenic plants of camelina (Camelina sativa (L.) Crantz) with the synthetic gene of antimicrobial peptide cecropin P1 (cecP1) were obtained. Agrobacterium-mediated transformation is performed using the binary vector pGA482::cecP1 by vacuum infiltration of flower buds. The presence of the cecP1 gene in the genome of plants was confirmed by PCR. CecP1 gene expression in transgenic plants was shown by Western blot analysis and by antimicrobial activity of plant extracts against the bacterial phytopathogene Erwinia carotovora. The plants of F0 and F1 generations had the normal phenotype and retained the ability to form viable seeds in self-pollination. cecP1 plants exhibit enhanced resistance to bacterial and fungal phytopathogens: Erwinia carotovora and Fusarium sporotrichioides. The increased sustainability of cecropin P1-expressing plants against salt stress is shown. The possibility of the integration of the cecP1 gene into the overall protective system of plants against biotic and abiotic stresses is discussed.

Journal

Russian Journal of GeneticsSpringer Journals

Published: May 14, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off