Expression of antisense chalcone synthase RNA in transgenic hybrid walnut microcuttings. Effect on flavonoid content and rooting ability

Expression of antisense chalcone synthase RNA in transgenic hybrid walnut microcuttings. Effect... Walnut somatic embryos (Juglans nigra × Juglans regia) were transformed with a vector containing a neomycin phosphotransferase II, a β-glucuronidase and an antisense chalcone synthase (chs) gene. This antisense construct included a 400 bp cDNA fragment of a walnut chs gene under the control of the duplicated CaMV-35S promoter. Molecular, biochemical and biological characterizations were performed both on transformed embryos propagated by secondary somatic embryogenesis and on microshoots developed by in vitro culture of embryonic epicotyls from somatic embryos. Thirteen transformed lines with the vector containing the antisense chs gene, one line with only the gus and nptII genes and one untransformed line were maintained in tissue culture. Six of the antisense lines were shown to be flavonoid-deficient. They exhibited a strongly reduced expression of chs genes, very low chalcone synthase activity and no detectable amounts of quercitrin, myricitrin, flavane-3-ols and proanthocyanidins in stems. Rooting tests showed that decreased flavonoid content in stems of antisense chs transformed lines was associated with enhanced adventitious root formation. Free auxin and conjugated auxin contents were determined during the latter phase of the micropropagation, and no variations were detected between control and antisense chs transformed lines. The in vitro plants developed a large basal callus and apical necrosis upon auxinic induction and the transformed lines highly deficient in flavonoids were more sensitive to exogenous application of indolebutyric acid (IBA). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Expression of antisense chalcone synthase RNA in transgenic hybrid walnut microcuttings. Effect on flavonoid content and rooting ability

Loading next page...
 
/lp/springer_journal/expression-of-antisense-chalcone-synthase-rna-in-transgenic-hybrid-kQNf8KUjNp
Publisher
Springer Journals
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006034709501
Publisher site
See Article on Publisher Site

Abstract

Walnut somatic embryos (Juglans nigra × Juglans regia) were transformed with a vector containing a neomycin phosphotransferase II, a β-glucuronidase and an antisense chalcone synthase (chs) gene. This antisense construct included a 400 bp cDNA fragment of a walnut chs gene under the control of the duplicated CaMV-35S promoter. Molecular, biochemical and biological characterizations were performed both on transformed embryos propagated by secondary somatic embryogenesis and on microshoots developed by in vitro culture of embryonic epicotyls from somatic embryos. Thirteen transformed lines with the vector containing the antisense chs gene, one line with only the gus and nptII genes and one untransformed line were maintained in tissue culture. Six of the antisense lines were shown to be flavonoid-deficient. They exhibited a strongly reduced expression of chs genes, very low chalcone synthase activity and no detectable amounts of quercitrin, myricitrin, flavane-3-ols and proanthocyanidins in stems. Rooting tests showed that decreased flavonoid content in stems of antisense chs transformed lines was associated with enhanced adventitious root formation. Free auxin and conjugated auxin contents were determined during the latter phase of the micropropagation, and no variations were detected between control and antisense chs transformed lines. The in vitro plants developed a large basal callus and apical necrosis upon auxinic induction and the transformed lines highly deficient in flavonoids were more sensitive to exogenous application of indolebutyric acid (IBA).

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off