Expression of a Thermostable Bacterial Cellulase in Transgenic Tobacco Plants

Expression of a Thermostable Bacterial Cellulase in Transgenic Tobacco Plants The bacterial gene of the thermostable endo-β-1,4-glucanase (cellulase) was shown to retain its activity and substrate specificity when expressed in transgenic tobacco plants. The leader peptide of the carrot extensin was efficient in transferring the bacterial enzyme into the apoplast. The expression of the bacterial cellulase gene leads to changes in the plant tissue morphology. In the transgenic plant lines, regeneration of primary shoots from callus occurred at the three to five times higher cytokinin (6-BAP) concentration than in control plants. The transgenic plants that expressed the bacterial gene exhibited increased bushiness and altered leaf shape. The transgenic plants developed can be used as models for studying the cellulases role and function in plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Expression of a Thermostable Bacterial Cellulase in Transgenic Tobacco Plants

Loading next page...
 
/lp/springer_journal/expression-of-a-thermostable-bacterial-cellulase-in-transgenic-tobacco-Fu09Kr4agY
Publisher
Springer Journals
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1023/A:1023227802029
Publisher site
See Article on Publisher Site

Abstract

The bacterial gene of the thermostable endo-β-1,4-glucanase (cellulase) was shown to retain its activity and substrate specificity when expressed in transgenic tobacco plants. The leader peptide of the carrot extensin was efficient in transferring the bacterial enzyme into the apoplast. The expression of the bacterial cellulase gene leads to changes in the plant tissue morphology. In the transgenic plant lines, regeneration of primary shoots from callus occurred at the three to five times higher cytokinin (6-BAP) concentration than in control plants. The transgenic plants that expressed the bacterial gene exhibited increased bushiness and altered leaf shape. The transgenic plants developed can be used as models for studying the cellulases role and function in plants.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Oct 7, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off