Expression of a gene encoding a rice RING zinc-finger protein, OsRZFP34, enhances stomata opening

Expression of a gene encoding a rice RING zinc-finger protein, OsRZFP34, enhances stomata opening By oligo microarray expression profiling, we identified a rice RING zinc-finger protein (RZFP), OsRZFP34, whose gene expression increased with high temperature or abscisic acid (ABA) treatment. As compared with the wild type, rice and Arabidopsis with OsRZFP34 overexpression showed increased relative stomata opening even with ABA treatment. Furthermore, loss-of-function mutation of OsRZFP34 and AtRZFP34 (At5g22920), an OsRZFP34 homolog in Arabidopsis, decreased relative stomata aperture under nonstress control conditions. Expressing OsRZFP34 in atrzfp34 reverted the mutant phenotype to normal, which indicates a conserved molecular function between OsRZFP34 and AtRZFP34. Analysis of water loss and leaf temperature under stress conditions revealed a higher evaporation rate and cooling effect in OsRZFP34-overexpressing Arabidopsis and rice than the wild type, atrzfp34 and osrzfp34. Thus, stomata opening, enhanced leaf cooling, and ABA insensitivity was conserved with OsRZFP34 expression. Transcription profiling of transgenic rice overexpressing OsRZFP34 revealed many genes involved in OsRZFP34-mediated stomatal movement. Several genes upregulated or downregulated in OsRZFP34-overexpressing plants were previously implicated in Ca2+ sensing, K+ regulator, and ABA response. We suggest that OsRZFP34 may modulate these genes to control stomata opening. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Expression of a gene encoding a rice RING zinc-finger protein, OsRZFP34, enhances stomata opening

Loading next page...
 
/lp/springer_journal/expression-of-a-gene-encoding-a-rice-ring-zinc-finger-protein-osrzfp34-RD79kQ2s10
Publisher
Springer Netherlands
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-014-0217-6
Publisher site
See Article on Publisher Site

Abstract

By oligo microarray expression profiling, we identified a rice RING zinc-finger protein (RZFP), OsRZFP34, whose gene expression increased with high temperature or abscisic acid (ABA) treatment. As compared with the wild type, rice and Arabidopsis with OsRZFP34 overexpression showed increased relative stomata opening even with ABA treatment. Furthermore, loss-of-function mutation of OsRZFP34 and AtRZFP34 (At5g22920), an OsRZFP34 homolog in Arabidopsis, decreased relative stomata aperture under nonstress control conditions. Expressing OsRZFP34 in atrzfp34 reverted the mutant phenotype to normal, which indicates a conserved molecular function between OsRZFP34 and AtRZFP34. Analysis of water loss and leaf temperature under stress conditions revealed a higher evaporation rate and cooling effect in OsRZFP34-overexpressing Arabidopsis and rice than the wild type, atrzfp34 and osrzfp34. Thus, stomata opening, enhanced leaf cooling, and ABA insensitivity was conserved with OsRZFP34 expression. Transcription profiling of transgenic rice overexpressing OsRZFP34 revealed many genes involved in OsRZFP34-mediated stomatal movement. Several genes upregulated or downregulated in OsRZFP34-overexpressing plants were previously implicated in Ca2+ sensing, K+ regulator, and ABA response. We suggest that OsRZFP34 may modulate these genes to control stomata opening.

Journal

Plant Molecular BiologySpringer Journals

Published: Jul 8, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off