Expression and Inheritance of a desynaptic phenotype with impaired homologous synapsis in rye

Expression and Inheritance of a desynaptic phenotype with impaired homologous synapsis in rye The cytological phenotype was studied in a desynaptic form isolated from a population of rye cultivar Vyatka. The primary defect of desynaptic plants was identified as nonhomologous (heterologous) chromosome synapsis, which was observed by electron microscopy of synaptonemal complexes (SCs) in meiotic prophase I. Synapsis defects involved switches of synapsing axial elements to nonhomologous partners, asynapsis in the switching region, and foldbacks formed by the SC lateral elements. Defective bivalent formation was observed at later stages: the univalent number varied and multivalent chromosome associations were observed in single cells in metaphase I. The desynaptic phenotype was controlled by two recessive genes, sy8a and sy8b, which acted and were inherited independently. In a hybrid combination with line Ku-2/63, the desynaptic phenotype was suppressed by the dominant allele of a third gene for inhibitor I; the segregation in hybrid families corresponded to 57:7. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Expression and Inheritance of a desynaptic phenotype with impaired homologous synapsis in rye

Loading next page...
 
/lp/springer_journal/expression-and-inheritance-of-a-desynaptic-phenotype-with-impaired-PfSnjNy0pe
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2007 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795407100146
Publisher site
See Article on Publisher Site

Abstract

The cytological phenotype was studied in a desynaptic form isolated from a population of rye cultivar Vyatka. The primary defect of desynaptic plants was identified as nonhomologous (heterologous) chromosome synapsis, which was observed by electron microscopy of synaptonemal complexes (SCs) in meiotic prophase I. Synapsis defects involved switches of synapsing axial elements to nonhomologous partners, asynapsis in the switching region, and foldbacks formed by the SC lateral elements. Defective bivalent formation was observed at later stages: the univalent number varied and multivalent chromosome associations were observed in single cells in metaphase I. The desynaptic phenotype was controlled by two recessive genes, sy8a and sy8b, which acted and were inherited independently. In a hybrid combination with line Ku-2/63, the desynaptic phenotype was suppressed by the dominant allele of a third gene for inhibitor I; the segregation in hybrid families corresponded to 57:7.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Oct 15, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off